
MATRIXBBC
PROGRAMMERS GUIDE

SMART BUILDING SOLUTIONSSMART BUILDING SOLUTIONS

MatrixBBC Programmers Guide

Part # - 1E-04-00-0147

© 2012 American Auto-Matrix
TM

This document is protected by copyright and is the property of American Auto-Matrix. It may not be used or
copied in whole or in part for any purpose other than that for which it is supplied without authorization. This
document does not constitute any warranty, expressed or implied.

Every effort has been made to ensure that all information was correct at the time of publication. American
Auto-Matrix reserves the right to alter specifications, performance, capabilities and presentation of this
product at any time.

American Auto-Matrix and Auto-Matrix are trademarks of American Auto-Matrix and are not to be used for
publication without the written consent of American Auto-Matrix.

All other brand names or product names are trademarks or registered trademarks of their respective com-
panies or organizations.

WORLD HEADQUARTERS

American Auto-Matrix
One Technology Lane
Export, Pennsylvania 15632-8903 USA
Tel (1) 724-733-2000
Fax (1) 724-327-6124
Email aam@aamatrix.com
www.aamatrix.com

REVISION HISTORY
Updated 10/5/2012
. Corresponds with product launch (firmware revision v1.02)
MatrixBBC Programmers Guide (10/5/2012) iii

REVISION HISTORY
iv MatrixBBC Programmers Guide (10/5/2012)

ABOUT THIS MANUAL
This manual describes the operation and configuration of MatrixBBC.

This document is divided into the following sections:
. One: Overview, describing the product platform.
. Two: Device Setup, describing the setup and configuration of device and communications.
. Three: Programs and Files, describing SPL programming.
. Four: Scheduling, describing the setup and configuration of schedules and calendars.
. Five: Alarm Routing, describing how to route input and output alarms to workstations and other

devices.
. Six: Data Storage, describing the setup and configuration of Analog and Binary Values objects.
. Seven: Data Manipulation, describing the setup and configuration of data manipulation objects.
. Eight: Data Movement, describing the setup and configuration of data movement objects.
. Nine: Expansion I/O, describing the setup and configuration of expandable STATbus IOX modules.
. Ten: Inputs Setup, describing the setup and configuration of inputs.
. Eleven: Outputs Setup, describing the setup and configuration of outputs.
. Twelve: Control Loop, describing how to use and implement control loops.
. Thirteen: Miscellaneous, described the use of objects found under the Miscellaneous category.

This document contains certain style and formatting conventions for conveying information in a clear and
concise manner:
. Menu commands appear with a “>” symbol between levels. For example: File>Open.
. Italics indicate options within software.
MatrixBBC Programmers Guide (10/5/2012) v

ABOUT THIS MANUAL
vi MatrixBBC Programmers Guide (10/5/2012)

TABLE OF CONTENTS
1.1 What is the MatrixBBC?... 1-3
1.2 Fundamental Concepts Overview.. 1-5

1.2.1 BACnet MS/TP Overview... 1-5
1.2.2 MS/TP Network Token Passing ... 1-5
1.2.3 BACnet MS/TP LAN Wiring ... 1-6
1.2.4 MS/TP Device Addressing ... 1-6
1.2.5 Communication Baud Rates .. 1-6
1.2.6 Network Optimization... 1-6

2.1 Logging Into the MatrixBBC... 2-3
2.1.1 About the MatrixBBC Control Panel... 2-3

2.2 Licensing.. 2-4
2.2.1 License... 2-4

2.3 Communication Setup ... 2-5
2.3.1 Port Configuration .. 2-5
2.3.2 Port One/Two - MSTP.. 2-5
2.3.3 BACnet Settings... 2-6
2.3.4 BBMD Settings... 2-7

2.4 System Administration ... 2-9
2.4.1 System Services .. 2-9
2.4.2 System Status.. 2-9
2.4.3 Process Status... 2-9
2.4.4 System Updates... 2-10
2.4.5 Ethernet Settings ... 2-10
2.4.6 Network Diagnostics .. 2-11
2.4.7 Time Settings ... 2-12
2.4.8 Web Server Configuration.. 2-13
2.4.9 Backup/Restore ... 2-14
2.4.10 Clear Configuration ... 2-15

2.5 BACnet Time Synchronization Setup .. 2-16
2.5.1 Configuring time-synchronization-recipients 2-16
2.5.2 Configuring the Broadcast Time Sync Interval............................. 2-19

2.6 Daylight Saving.. 2-20
2.7 Manually Configuring Device Address Bindings .. 2-21
2.8 BACnet MS/TP Slave Proxy .. 2-22

2.8.1 Enabling MS/TP Slave Proxy... 2-22
2.8.2 Configuring the Manual Slave Address Binding........................... 2-23

3.1 Overview.. 3-3
3.2 SPL Programming ... 3-4

3.2.1 Creating Programs in the MatrixBBC... 3-4
3.2.2 Loading Programs into MatrixBBC... 3-4

3.3 Introduction to SPL .. 3-5
3.4 The Parts of SPL Programs... 3-6
3.5 Program Names... 3-7
3.6 The .SPL, .PLB and .LST Files.. 3-8
3.7 Properties and Registers ... 3-9
MatrixBBC Programmers Guide (10/5/2012) vii

TABLE OF CONTENTS
3.8 Compiler Control Statements.. 3-10
3.9 Comments... 3-11
3.10 Labels ... 3-12
3.11 Expressions .. 3-13
3.12 Program Statements Overview... 3-15
3.13 Assignment Statements and Equates... 3-17

3.13.1 Standard Value assignment .. 3-17
3.13.2 EQU .. 3-18

3.14 Iteration, Branching and Subroutines.. 3-19
3.14.1 GOTO statement... 3-19
3.14.2 IF... THEN... {ELSE...} Statement ... 3-19
3.14.3 ON... GOTO... statement .. 3-20
3.14.4 LOOP Statement... 3-20
3.14.5 GOSUB Statement.. 3-21
3.14.6 RETURN Statement.. 3-21

3.15 Program Delays .. 3-22
3.15.1 SWAIT and MWAIT Statements.. 3-22
3.15.2 WAIT Statement.. 3-22

3.16 Execution Error Control... 3-23
3.16.1 ERRORABORT Statement ... 3-23
3.16.2 ERRORWAIT Statement... 3-23
3.16.3 ONERROR Statement .. 3-23

3.17 Debugging Statements ... 3-25
3.17.1 SECTION Statement... 3-25

3.18 Program Control Properties .. 3-26
3.19 Using SPL with BACnet Objects ... 3-29
3.20 Fundamentals of SPL in BACnet .. 3-30

3.20.1 The PROP Statement ... 3-30
3.20.2 Prop Statement Examples .. 3-30

3.21 Working with Object Properties... 3-32
3.21.1 Referencing Objects.. 3-32
3.21.2 Referencing Properties ... 3-32
3.21.3 Addressing Object Properties ... 3-32
3.21.4 Addressing User-Defined properties ... 3-33
3.21.5 Peer-To-Peer Addressing ... 3-33
3.21.6 Writing Values to Object Properties .. 3-34
3.21.7 Data Type Sensitivity with BACnet SPL.................................... 3-36
3.21.8 EQU Function Limitations in BACnet SPL 3-36

3.22 Object Syntax Reference.. 3-37
3.23 Advanced BACnet SPL Functions .. 3-40

3.23.1 The OID Function.. 3-40
3.23.2 The BACNET Statement ... 3-40

3.24 Troubleshooting Your SPL Program... 3-43
3.24.1 Using SECTION Statements... 3-43
3.24.2 Using Single-Step Mode ... 3-44
viii MatrixBBC Programmers Guide (10/5/2012)

TABLE OF CONTENTS
3.24.3 Reference the .LST File ... 3-46
4.1 Scheduling Overview... 4-3

4.1.1 About Schedule Objects .. 4-3
4.1.2 About Calendar Objects... 4-3
4.1.3 Creating Schedules in the MatrixBBC.. 4-3
4.1.4 Creating Calendars in the MatrixBBC.. 4-4

4.2 Schedule Object Configuration .. 4-5
4.2.1 Determine Your Schedule Application ... 4-5
4.2.2 Configure the Schedule Datatype .. 4-5
4.2.3 Configure the Effective Period ... 4-7
4.2.4 Configure the List of Object-Property References 4-8
4.2.5 Configure the Priority for Writing.. 4-9
4.2.6 Configure the Weekly-Schedule .. 4-10
4.2.7 Configuring the Exception Schedule.. 4-11

4.3 Calendar Object Configuration .. 4-13
4.3.1 Auto-Deleting Stale Calendar Entries .. 4-13

5.1 Notification Class Overview ... 5-3
5.1.1 Creating Notification Classes in the MatrixBBC............................. 5-3
5.1.2 Configuring the Priority .. 5-3
5.1.3 Configuring Ack-Required.. 5-4
5.1.4 Configuring the Recipient List .. 5-4

6.1 Data Storage Overview.. 6-3
6.1.1 Programming Concepts and Techniques....................................... 6-3

6.2 Analog Value Objects ... 6-4
6.2.1 Creating Analog Values in the MatrixBBC 6-4
6.2.2 Configuring Alarm/Event Notifications .. 6-4
6.2.3 Analog Value Application Examples .. 6-5

6.3 Binary Value Objects ... 6-7
6.3.1 Creating Binary Values in the MatrixBBC 6-7
6.3.2 Configuring Alarm/Event Notifications .. 6-7

6.4 Trend Log Objects ... 6-8
6.4.1 Creating Trend Logs in the MatrixBBC .. 6-8
6.4.2 Configuring the Object-Property for Sampling 6-8
6.4.3 Configuring the Start and Stop Times.. 6-9
6.4.4 Configuring the Logging Type.. 6-10
6.4.5 Enabling the Trend Log.. 6-10

7.1 Data Manipulation Overview.. 7-3
7.1.1 Programming Concepts and Techniques....................................... 7-3

7.2 Math... 7-4
7.2.1 Creating Math Objects in the MatrixBBC 7-4
7.2.2 Math Object Configuration ... 7-4
7.2.3 Feedback Text .. 7-5

7.3 Logic .. 7-6
7.3.1 Creating Logic Objects in the MatrixBBC....................................... 7-6
7.3.2 Logic Object Configuration... 7-6
MatrixBBC Programmers Guide (10/5/2012) ix

TABLE OF CONTENTS
7.4 Min/Max/Avg .. 7-7
7.4.1 Creating Min/Max/Avg Objects in the MatrixBBC.......................... 7-7

7.5 Enthalpy... 7-8
7.5.1 Creating Enthalpy Objects in the MatrixBBC 7-8

7.6 Scale .. 7-9
7.6.1 Creating Scale Objects in the MatrixBBC 7-9
7.6.2 Scale Object Configuration ... 7-9

7.7 Input Select .. 7-10
7.7.1 Creating Input Select Objects in the MatrixBBC 7-10
7.7.2 Input Select Object Configuration ... 7-10

7.8 Staging.. 7-11
7.8.1 Creating Staging Objects in the MatrixBBC 7-11
7.8.2 Basic Configuration.. 7-11
7.8.3 Staging Modes .. 7-12
7.8.4 Stage Interlocking ... 7-13

8.1 Data Movement Overview... 8-3
8.1.1 Programming Concepts and Techniques...................................... 8-3

8.2 Broadcasts .. 8-4
8.2.1 Creating Broadcast Objects in the MatrixBBC 8-4
8.2.2 Broadcasting Concepts .. 8-4
8.2.3 Sending a Broadcast.. 8-5
8.2.4 Receiving a Broadcast ... 8-5
8.2.5 Feedback and Status Information .. 8-5

8.3 Local Remaps... 8-6
8.3.1 Creating Local Remap in the MatrixBBC 8-6
8.3.2 Remap Mode.. 8-6
8.3.3 Data Coercion Protection ... 8-7
8.3.4 Feedback and Status Information .. 8-7

8.4 Netmap Objects .. 8-9
8.4.1 Creating Netmap Objects in the MatrixBBC.................................. 8-9
8.4.2 Netmap Mode... 8-9
8.4.3 Feedback and Status Information .. 8-10

9.1 What are IOX Modules?.. 9-3
9.1.1 Features of IOX Modules .. 9-3
9.1.2 Remote I/O and Mapping Points ... 9-3

9.2 IOX Module Specifications.. 9-4
9.2.1 General ... 9-4
9.2.2 SSB-FI1... 9-4
9.2.3 SSB-UI1 .. 9-4
9.2.4 SSB-AO1... 9-4
9.2.5 SSB-DI1 .. 9-5
9.2.6 SSB-DO1 .. 9-5
9.2.7 SSB-DO1-I .. 9-5
9.2.8 SSB-DO2 .. 9-5
9.2.9 SSB-DO2-I .. 9-5
x MatrixBBC Programmers Guide (10/5/2012)

TABLE OF CONTENTS
9.2.10 SSB-IOX1-1 ... 9-6
9.2.11 SSB-IOX1-2 ... 9-6
9.2.12 SSB-IOX2-1 ... 9-6
9.2.13 SSB-IOX2-2 ... 9-6

9.3 Length of the Network.. 9-7
9.4 Number of Devices .. 9-8

9.4.1 Communications Limits.. 9-8
9.5 GID Numbers and Mapping IOX Modules ... 9-10

9.5.1 Writing GIDs to Devices... 9-10
9.5.2 Removing GID assignments .. 9-10

9.6 SSB-FI1 ... 9-12
9.6.1 Features... 9-12
9.6.2 Wiring/Configuration .. 9-12
9.6.3 Mounting the SSB-FI1.. 9-15
9.6.4 Status Indicator LED.. 9-15
9.6.5 SSB-FI Configuration Table ... 9-16

9.7 SSB-UI1... 9-17
9.7.1 Features... 9-17
9.7.2 Wiring/Configuration .. 9-17
9.7.3 Mounting the SSB-UI1 ... 9-21
9.7.4 Status Indicator LED.. 9-22
9.7.5 SSB-UI Configuration Table... 9-23

9.8 SSB-AO1 ... 9-24
9.8.1 Features... 9-24
9.8.2 Wiring/Configuration .. 9-24
9.8.3 Mounting the SSB-AO1.. 9-27
9.8.4 Status Indicator LED.. 9-28
9.8.5 SSB-AO Configuration Table ... 9-29

9.9 SSB-DI1... 9-30
9.9.1 Features... 9-30
9.9.2 Wiring/Configuration .. 9-30
9.9.3 Mounting the SSB-DI1 ... 9-32
9.9.4 Status Indicator LED.. 9-33
9.9.5 SSB-DI1 Configuration Table... 9-33

9.10 SSB-DO1... 9-35
9.10.1 Features... 9-35
9.10.2 Mounting the SSB-DO1 ... 9-35
9.10.3 Wiring/Configuration .. 9-36
9.10.4 SSB-DO1 Configuration Table... 9-38

9.11 SSB-DO1-I... 9-39
9.11.1 Features... 9-39
9.11.2 Mounting the SSB-DO1-I ... 9-39
9.11.3 Wiring/Configuration .. 9-40
9.11.4 SSB-DO1-I Configuration Table... 9-43

9.12 SSB-DO2.. 9-44
MatrixBBC Programmers Guide (10/5/2012) xi

TABLE OF CONTENTS
9.12.1 Features .. 9-44
9.12.2 Mounting the SSB-DO2... 9-44
9.12.3 Wiring/Configuration.. 9-45
9.12.4 SSB-DO2 Configuration Table .. 9-47

9.13 SSB-DO2-I .. 9-48
9.13.1 Features .. 9-48
9.13.2 Mounting the SSB-DO2-I .. 9-48
9.13.3 Wiring/Configuration.. 9-49
9.13.4 SSB-DO1-I Configuration Table.. 9-52

9.14 SSB-IOX Family.. 9-53
9.15 SSB-IOX1-x .. 9-54

9.15.1 SSB-IOX1-1 Features ... 9-54
9.15.2 SSB-IOX1-2 Features ... 9-54
9.15.3 Wiring/Configuration.. 9-55
9.15.4 Network & Power .. 9-55
9.15.5 Universal Inputs .. 9-55
9.15.6 Digital Inputs ... 9-57
9.15.7 Analog Outputs ... 9-58
9.15.8 Digital Outputs... 9-59
9.15.9 Mounting the SSB-IOX1-X .. 9-60
9.15.10 Status Indicator LED ... 9-61
9.15.11 SSB-IOX1-1 Configuration Table .. 9-62

9.16 SSB-IOX2-x .. 9-63
9.16.1 SSB-IOX2-1 Features ... 9-63
9.16.2 SSB-IOX2-2 Module.. 9-63
9.16.3 Wiring/Configuration.. 9-64
9.16.4 Network & Power .. 9-64
9.16.5 Universal Inputs .. 9-65
9.16.6 Analog Outputs ... 9-68
9.16.7 Digital Outputs... 9-69
9.16.8 Mounting the SSB-IOX2-X .. 9-70
9.16.9 SSB-IOX2-1 Configuration Table .. 9-70

10.1 Inputs Overview .. 10-3
10.1.1 Programming Concepts and Techniques.................................. 10-3

10.2 Universal Inputs .. 10-4
10.2.1 Creating Analog Inputs in the MatrixBBC.................................. 10-4
10.2.2 Analog Input Configuration.. 10-4
10.2.3 Voltage Inputs ... 10-5
10.2.4 Configuring Analog Input Alarm/Event Notifications 10-7
10.2.5 Creating Binary Inputs in the MatrixBBC................................... 10-7
10.2.6 Binary Input Configuration... 10-8
10.2.7 Configuring Binary Input Alarm/Event Notifications 10-9

10.3 Digital Inputs ... 10-10
10.3.1 Configuring the Digital Inputs .. 10-10

10.4 Piecewise Curves ... 10-11
xii MatrixBBC Programmers Guide (10/5/2012)

TABLE OF CONTENTS
10.4.1 Creating Piecewise Curves in the MatrixBBC.......................... 10-11
10.4.2 Piecewise Curve Configuration.. 10-11
10.4.3 Piecewise Curves for Voltage Inputs 10-12
10.4.4 Piecewise Curves for Current Inputs 10-13
10.4.5 Piecewise Curves for Resistance Inputs.................................. 10-14

11.1 Outputs Overview .. 11-3
11.1.1 Programming Concepts and Techniques................................... 11-3

11.2 Analog Outputs .. 11-4
11.2.1 Creating Analog Outputs in the MatrixBBC................................ 11-4
11.2.2 Configuring Minimum and Maximum Thresholds....................... 11-4
11.2.3 Configuring Alarm/Event Notifications 11-4
11.2.4 AutoStuff Configuration.. 11-5
11.2.5 Other Logic Properties ... 11-6

11.3 Binary Outputs ... 11-7
11.3.1 Creating Binary Outputs in the MatrixBBC................................. 11-7
11.3.2 Configuring Minimum Off/On Times... 11-7
11.3.3 Configuring Polarity.. 11-7
11.3.4 Configuring State Texts ... 11-7
11.3.5 Configuring Alarm/Event Notifications 11-8
11.3.6 AutoStuff Configuration.. 11-8
11.3.7 Other Logic Properties ... 11-8

12.1 Control Loops Overview .. 12-3
12.1.1 Programming Concepts and Techniques................................... 12-3

12.2 Analog Output Control Loops .. 12-4
12.2.1 Basic Setup.. 12-4
12.2.2 Proportional Control Setup... 12-5
12.2.3 Deadband Configuration .. 12-6
12.2.4 Reset Control Setup... 12-8
12.2.5 Interlock Setup ... 12-11
12.2.6 Soft Start Setup.. 12-11
12.2.7 STAT Override Offset and Adjustment 12-11
12.2.8 Enabling the Control Loop ... 12-12

12.3 Pulse-Pair PID Control... 12-13
12.3.1 Basic Setup.. 12-13
12.3.2 Proportional Control Setup... 12-14
12.3.3 Deadband Configuration .. 12-15
12.3.4 Reset Control Setup... 12-17
12.3.5 Calibration.. 12-20
12.3.6 STAT Override Offset and Adjustment 12-22
12.3.7 Enabling the Control Loop ... 12-23

12.4 Thermostatic Control ... 12-24
12.4.1 Basic Setup.. 12-24
12.4.2 Configuring Loop Parameters .. 12-25
12.4.3 STAT Override Offset and Adjustment 12-26
12.4.4 Enabling the Control Loop ... 12-26
MatrixBBC Programmers Guide (10/5/2012) xiii

TABLE OF CONTENTS
13.1 Comm Status .. 13-3
13.1.1 Creating the Comm Status Object in the MatrixBBC 13-3
13.1.2 Communication Status Options.. 13-3

13.2 Season.. 13-4
13.2.1 Creating the Season Object in the MatrixBBC.......................... 13-4
13.2.2 Indicating the Current Season... 13-4
13.2.3 Controlling Seasonal TSTAT Loops Directly............................ 13-4
13.2.4 Overview of Current Seasonal States 13-4

13.3 Mfg Object... 13-5
13.3.1 (UT) Uptime Counter in Seconds .. 13-5

A.1 Device Object ... A-2
A.2 Analog Inputs (UIs)... A-8
A.3 Binary Inputs (UIs) and (DIs) .. A-11
A.4 Piecewise Curves... A-14
A.5 Analog Outputs... A-16
A.6 Binary Outputs.. A-19
A.7 STATBus Summary.. A-21
A.8 STATBus .. A-22
A.9 Programs 1-64.. A-23
A.10 FILE0.. A-25
A.11 PLB1-64.. A-26
A.12 Analog PID ... A-27
A.13 Pulse Pair PID .. A-30
A.14 Thermostatic Control .. A-33
A.15 Schedules... A-35
A.16 Calendars ... A-37
A.17 Notification Class.. A-38
A.18 Math.. A-39
A.19 Logic ... A-40
A.20 Min/Max/Avg .. A-42
A.21 Enthalpy ... A-43
A.22 Scaling ... A-44
A.23 Input Select .. A-45
A.24 Staging .. A-46
A.25 Broadcast .. A-49
A.26 Remap ... A-50
A.27 Netmap... A-51
A.28 Analog Value .. A-53
A.29 Binary Value ... A-55
A.30 Comm Status.. A-57
A.31 Season ... A-58
xiv MatrixBBC Programmers Guide (10/5/2012)

SECTION 1: OVERVIEW

This section provides general information regarding the MatrixBBC as well as a short review of the
fundamental concepts of the BACnet protocol.
IN THIS SECTION
What is the MatrixBBC?... 1-3
Fundamental Concepts Overview .. 1-5
 BACnet MS/TP Overview.. 1-5
 MS/TP Network Token Passing... 1-5
 BACnet MS/TP LAN Wiring... 1-6
 MS/TP Device Addressing .. 1-6
 Communication Baud Rates ... 1-6
 Network Optimization.. 1-6
MatrixBBC Programmers Guide (10/5/2012) 1-1

SECTION 1: OVERVIEW
1-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 1: OVERVIEW WHAT IS THE MATRIXBBC?
1.1 WHAT IS THE MATRIXBBC?
The MatrixBBC is a BACnet Building Controller product platform designed to provide global area control
capabilities. As a BACnet-compliant building controller, the product provides the ability to store and
execute logic, perform internal and external scheduling, trend collection, as well as other features
described throughout this document. The MatrixBBC is designed to provide hardware and software
flexibility using on-board I/O and STATbus - AAM’s innovative sensor networking technology.

The MatrixBBC can be used in a wide variety of applications that require either area control capabilities,
stand-alone Ethernet-enabled I/O control capabilities, sa well as full peer-to-peer network capabilities with
other BACnet devices.

Flexible by software design, the MatrixBBC supports dynamic creation of objects. The following table
below provides a list of the maximum amount of objects that the device will support.

Table 1-1 Maximum Object Count

Object Type Limit

Universal Inputs 144

Analog Outputs 72

Binary Outputs 72

Schedules 32

Calendars 32

Trend Logs 256

Analog Values 1000

Binary Values 1000

Programs 64

Notification Class 10

Season 1

Input Select 64

Remap 64

Netmap 64

Logic 64

Math 64

Motor Control 64

Scale 64
MatrixBBC Programmers Guide (10/5/2012) 1-3

WHAT IS THE MATRIXBBC? SECTION 1: OVERVIEW
Piecewise Curve 8

Enthalpy 64

Thermostatic Control Loop 64

PID Control Loop 64

Staging 16

Comm Status 1

Manufacturing 1

Broadcast 8

Table 1-1 Maximum Object Count

Object Type Limit
1-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 1: OVERVIEW FUNDAMENTAL CONCEPTS OVERVIEW
1.2 FUNDAMENTAL CONCEPTS OVERVIEW
This section of the user manual reviews standard fundamental concepts and provides an explanation of
the prerequisite information necessary to know prior to installing this product.

1.2.1 BACNET MS/TP OVERVIEW
BACnet MS/TP (Master Slave Token Passing) is an EIA-485 network layer intended for use with lower-
level devices such as Unitary Controllers. In comparison to BACnet/IP and BACnet/Ethernet, MS/TP is
more cost-effective to implement due to lower cost of wiring. Given the MS/TP network is a serial-based
network, devices may be configured to communicate at different baud rates specified by BACnet.
Therefore it is essential to know information regarding the BACnet network you are connecting to prior to
installing and implementing the MatrixBBC.

1.2.2 MS/TP NETWORK TOKEN PASSING
BACnet MS/TP uses token passing to allow devices to communicate on the network. Token passing is
controlled by each device, which contains an internal memory list of other MS/TP peers connected to the
network. The token is passed in order of the MAC Address (Unit ID) from lowest to highest. In most MS/TP
networks, each device is configured to be a master. Given all devices may be a master, MS/TP may
appear and react slower than traditional building automation protocols. However, configuring your network
for faster baud rates will help provide better bandwidth and transport speed of network messaging.

Token passing is a communications scheme that allows connected devices to inter-communicate with one
another. A network “token” is passed from unit to unit on the network in a round-robin fashion by order of
the MAC Address (lowest to highest) to provide a transport to access the network. When a unit possesses
the token, it may perform any network activity for which it is responsible. When finished, the token is then
passed onto the next device. At any time, the unit that possesses the token is the only device permitted to
initiate communications with another device on the network or to request information from it. A device that
receives the token may or may not need to perform network functions (e.g. read values from a remote
device, broadcast information, etc.). If not, it will simply pass the token along the network.

Figure 1-1 MS/TP Token Passing Example

Because each device can be an MS/TP master, it is important to realize that each MS/TP network should
be optimized. Later sub-sections of this manual explain this process.

BACnet/MSTP

MSTP Network Token

MAC #0

MAC #1 MAC #2 MAC #3 MAC #4

MSTP Token Flow
MatrixBBC Programmers Guide (10/5/2012) 1-5

FUNDAMENTAL CONCEPTS OVERVIEW SECTION 1: OVERVIEW
1.2.3 BACNET MS/TP LAN WIRING
Similar to EIA-485 standards, BACnet MS/TP networks support a maximum network distance of 4000 feet
maximum with 18-AWG, 2-wire, shielded-twisted-pair cabling. This device is designed with half-watt serial
drivers, allowing up to a maximum of 64 devices to be connected to a single MS/TP network bus.
If you are connecting the MatrixBBC to an existing MS/TP network consisting of third-party devices,
consult third-party vendor documentation regarding MS/TP network considerations.

1.2.4 MS/TP DEVICE ADDRESSING
BACnet MS/TP devices contain two unique addresses. One device address is known as a Device
Instance, and the other is a MAC Address.

The Device Instance is an address assignment that is used to identify the BACnet device on a global
BACnet network. When a device is connected to a global BACnet network consisting of multiple data
layers joined together using routers, the Device Instance is used to uniquely identify the device on a global
basis. The valid range for the device instance in a BACnet device is 0 to 4,194,302. The MatrixBBC
controller must be configured for a unique, non-conflicting Device Instance. In the event that multiple
devices are assigned the same Device Instance, both devices will simply not communicate on the BACnet
network, or could be subject to mis-directed messaging (a message intended for Device-A may be routed
to Device-B)

The MAC Address is an address assignment used within the BACnet MS/TP segment to permit a device
to actively communicate on the BACnet MS/TP network. Valid MAC Address assignments range from 0 to
127 and are typically assigned in a logical and incremental order to permit faster token passing between
devices. The MAC Address of a BACnet MS/TP device must be a unique, non-conflicting value that exists
on the local MS/TP network. In the event that multiple devices are assigned with the same MAC Address,
the effects can be far more detrimental than that of a conflicting Device Instance; potentially resulting in a
failure of the entire local MS/TP network. In the event that the MatrixBBC determining its MAC Address
may be a duplicate, the MatrixBBC will inform the user that a duplicate MAC Address has been detected
and will not perform client communications until resolved.

In most cases, the MatrixBBC should have it’s MAC Address configured for a value of zero (0). Given it’s
capabilities as a router and a device that will likely perform the most network activity, this will allow it to re-
generate the network token should a drop occur.

1.2.5 COMMUNICATION BAUD RATES
As a serial based protocol, BACnet MS/TP supports the following four baud rates: 9.6kbps, 19.2kbps,
38.4kbps, and 76.8kbps.

Each device communicating on an MS/TP network must be configured for the same baud rate at all times.
In the event that the MatrixBBC’s communication baud rate is incorrect for the network it is connected to,
the MatrixBBC will inform the user that a different baud rate has been detected and will not perform client
communications until resolved.

1.2.6 NETWORK OPTIMIZATION
In BACnet MS/TP devices, specific device properties are available to permit optimization of network
communications. By adjusting the Device properties max-master and max-info-frames, users can adjust
the token passing abilities of devices. The functionality of these two properties is described as follows:
. Max-Master - defines the highest unit ID of a MSTP master that is connected to the network. This

value specifies to what maximum address a token may pass. For example if you have 64 devices
addressed in logical order, this value would be assigned to 64. This value should be set to the same
value across all devices connected to an MSTP network.
1-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 1: OVERVIEW FUNDAMENTAL CONCEPTS OVERVIEW
. Max-Info-Frames - defines the amount of data frames that a MSTP master can use the token before
passing onto the next device. This value is typically set by the factory, but can be modified if neces-
sary. In the event a device does not need to keep the token for the amount of frames specified, AAM
devices will automatically pass the token onto the next device.
MatrixBBC Programmers Guide (10/5/2012) 1-7

FUNDAMENTAL CONCEPTS OVERVIEW SECTION 1: OVERVIEW
1-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP

This section describes software configuration of the device itself, including communications and setup of
alarm and event information to a front-end, building controller, or operator workstation. In order to setup
the MatrixBBC, a web-browser must be used to access general device setup. To configure items such as
BACnet Time Synchronization, Daylight Savings, and Device Address Binding, NB-Pro must be used.
IN THIS SECTION
Logging Into the MatrixBBC ... 2-3
 About the MatrixBBC Control Panel.. 2-3
Licensing.. 2-4
 License.. 2-4
Communication Setup.. 2-5
 Port Configuration ... 2-5
 Port One/Two - MSTP... 2-5
 BACnet Settings.. 2-6
 BBMD Settings.. 2-7
System Administration ... 2-9
 System Services ... 2-9
 System Status ... 2-9
 Process Status .. 2-9
 System Updates.. 2-10
 Ethernet Settings .. 2-10
 Network Diagnostics ..2-11
 Time Settings .. 2-12
 Web Server Configuration... 2-13
 Backup/Restore .. 2-14
 Clear Configuration ... 2-15
BACnet Time Synchronization Setup... 2-16
Daylight Saving .. 2-20
Manually Configuring Device Address Bindings .. 2-21
BACnet MS/TP Slave Proxy... 2-22
 Enabling MS/TP Slave Proxy.. 2-22
 Configuring the Manual Slave Address Binding.. 2-23
MatrixBBC Programmers Guide (10/5/2012) 2-1

SECTION 2: DEVICE SETUP
2-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP LOGGING INTO THE MATRIXBBC
2.1 LOGGING INTO THE MATRIXBBC
Within the MatrixBBC, the general setup and configuration for all BACnet communications is achieved
through an embedded web-server built into the product. The web-server contains pages that allow
technicians to configure items such as MS/TP network configuration, BACnet routing information, as well
as other items.

To access the web-server of the MatrixBBC, perform the following steps:
1. Using a standard web-browser, enter the default IP address of your MatrixBBC. The default IP address

is 192.168.1.250. Navigate to the device.

Figure 2-1 - MatrixBBC Login Page

2. When navigated successfully, you will be greeted with the login page. Enter your username and pass-
word and click the Log In button. The default, case-sensitive credentials are as followed:

. Username - aamuser

. Password - default

2.1.1 ABOUT THE MATRIXBBC CONTROL PANEL
The MatrixBBC Control Panel contains several web-pages that permit technicians to manage and setup
the core hardware platform of the controller. Common items configured and administered through this
embedded web-site include the following:
. Licensing - used to manage your MatrixBBC’s licensed features.
. Communication Setup - used to configure BACnet network communications for the MatrixBBC.
. System Administration - used to administer the hardware, perform diagnostic troubleshooting, and per-

form features such as backing up and restoring the programming of the MatrixBBC.
. System Logs - used to retract diagnostic logs for advanced troubleshooting with AAM Technical Ser-

vices.

Each portion of the Control Panel is discussed in further details within this section.
MatrixBBC Programmers Guide (10/5/2012) 2-3

LICENSING SECTION 2: DEVICE SETUP
2.2 LICENSING
The Licensing folder contains a page to view and manage your current license.

2.2.1 LICENSE
The License area provided the ability to view the current license of your MatrixBBC, as well as provide the
means to upload/download license files. By default, the MatrixBBC is licensed by AAM when the product is
shipped. As new features and capabilities are made available, they may potentially be licensed as optional
features. This area provide the means to manage your license.

Figure 2-2 - MatrixBBC License Page

You may download a copy of your license by clicking the blue Download link shown above. Should your
MatrixBBC be upgraded by license, you may use the Browse and Upload buttons to upload a new license
to the target. In order to make license changes effective, it is recommended that you restart the MatrixBBC
through the System Services page found under System Administration.
2-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP COMMUNICATION SETUP
2.3 COMMUNICATION SETUP
The Communication Setup page is used to setup all BACnet network communication for the MatrixBBC.
This area contains a page for EIA-485 Port Configuration, as well as a sub-folder for BACnet details.

2.3.1 PORT CONFIGURATION
The Port Configuration page is used to enable and disable MS/TP network communications for each RS-
485 port. To enable BACnet MS/TP network communications, simply set the Protocol for each port to
BACnet MSTP. To disable a port, set the selector to Not Assigned. Click Submit when finished and follow
any additional steps required by the embedded web-site.

Figure 2-3 - MatrixBBC Port Configuration

2.3.2 PORT ONE/TWO - MSTP
The Port One/Two - MSTP page is used to configure BACnet MS/TP communication settings for the
specific port - including MAC Address, Baud Rate, and token control properties.

Figure 2-4 - MS/TP Port Configuration Properties
MatrixBBC Programmers Guide (10/5/2012) 2-5

COMMUNICATION SETUP SECTION 2: DEVICE SETUP
The following table below provides configuration notes for each parameter.

2.3.3 BACNET SETTINGS
The BACnet Settings page is used to configure all aspects of data routing, read/write retires, and another
parameters within the MatrixBBC. The following tables below provide details on configuration for each
area and it’s properties.

Figure 2-5 - MatrixBBC BACnet Configuration Settings

Table 2-1 BACnet MS/TP Port Configuration Notes

Property Notes

MS/TP Network
Number

Defines the network number for this MS/TP network bus. Valid ranges are 1-
65534, and must be unique for each MS/TP network system-wide.

Baud Rate Defines the network speed of the MS/TP network.

Max Master Defines the highest maximum MS/TP master node addressed on the network.

Max Info Frames
Defines the highest number of frames permitted to be used by the MatrixBBC
before the network token is passed.

This Station (ID)
Defines the MAC Address/Unit ID for the port. By default, this is set for zero
(0) and should remain at this assignment.

Table 2-2 BACnet/IP Configuration Notes

Property Notes

UDP Port
Defines the UDP port that general BACnet/IP communications will occur
on. By default, most BACnet/IP devices uses Port 47808.
2-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP COMMUNICATION SETUP
2.3.4 BBMD SETTINGS

The BBMD Settings area is used configure BBMD table setup for BACnet networks. Within this section,
two BBMD tables are available - one for standard BBMD configuration, and another for BBMD over NAT.
Either or must be enabled in order to add entries into the corresponding tables.

Table 2-3 BACnet Router Configuration Notes

Property Notes

Device Name Defines the network identifier name for this target as a BACnet device.

BACnet Device Instance
Number

Defines the Device ID for this target as a BACnet device. Valid ranges are
from 0 - 4194302.

BACnet Ethernet Enabled

Defines if BACnet/Ethernet routing is enabled. In order for AspectFT to
display and interact with BACnet/Ethernet devices, this must be set to Yes.

NOTE - On a local network, only one device should be configured to have
BACnet/Ethernet enabled. Having more than one device enabled for BACnet/
Ethernet can result in cyclic routing of packets.

BACnet IP Enabled Defines if BACnet/IP routing is enabled.

BACnet IP Network Number
Defines the BACnet/IP network number this device either hosts or is joined to.
Valid ranges are 1-65534.

BACnet Internal Network
Number

Defines the internal network number to allow AspectFT to interact with
objects local to itself. This network number must be unique across all devices
and cannot conflict with any established network numbers for IP, Ethernet, or
MS/TP. Valid ranges are 1-65534

BACnet NAT Network
Enabled

Defines if BACnet BBMD NAT functionality and accessibility is enabled.
When enabled, this feature permits NB-Pro to access a site remotely in a
more efficient manner when NAT routers are involved. If enabled, the
following properties must be configured to ensure proper operation:

. BACnet NAT Network Number - Defines a unique network number for
NAT access. This network number must be unique from other networks
within your BACnet inter-network. Valid ranges are 1-65534.

. BACnet NAT External IP Address - Defines the external IP address for
the NAT router that the device will forward packets through.

. BACnet NAT External Port - Defines the UDP Port assignment that BAC-
net packets will be forwarded through. This cannot conflict with the stan-
dard BACnet IP UDP Port Setting. If you intend to connect to the device
remotely using NB-Pro, this port would be used in your NB-Pro Connec-
tion Settings.

BACnet APDU Timeout
Defines the APDU time out for BACnet communications. This value defaults
to 3000ms and is considered optimal.

Router Debug Level Defines level of debugging for the device. This should be set to zero (0).

BACnet Debug Level
Defines level of debugging for general BACnet communications. This should
be set to zero (0).
MatrixBBC Programmers Guide (10/5/2012) 2-7

COMMUNICATION SETUP SECTION 2: DEVICE SETUP
Figure 2-6 - BBMD Configuration

When entering addresses into the table, it is recommended that two-hop distribution methods be used,
where an entry should contain a mask of 255.255.255.255 (indicating two-hop, global). This reduces the
potential for standard IP routing issues that could occur on an IT infrastructure.
2-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP SYSTEM ADMINISTRATION
2.4 SYSTEM ADMINISTRATION
The System Administration area is used to administer the hardware elements of the MatrixBBC, including
Ethernet address setup, and other variables.

2.4.1 SYSTEM SERVICES
The System Services area is used to perform a reboot of the controller itself, as well as restart Ethernet
and web services. To restart a specific item, select the item from the drop-down and click Submit.

Figure 2-7 - System Services

2.4.2 SYSTEM STATUS
The System Status page provides an overview of all information contained within the system, provided
revision information, as well as memory and load status.

Figure 2-8 - System Status

2.4.3 PROCESS STATUS
The Process Status page provides a view of all system services that are running. This page is helpful for
troubleshooting issues related to CPU usage and memory allocation.
MatrixBBC Programmers Guide (10/5/2012) 2-9

SYSTEM ADMINISTRATION SECTION 2: DEVICE SETUP
Figure 2-9 - Process Status

2.4.4 SYSTEM UPDATES
The System Updates page is used to apply firmware and maintenance updates to the MatrixBBC when
needed. This page provides a simple wizard for applying system updates.

Figure 2-10 - System Updates

2.4.5 ETHERNET SETTINGS
The Ethernet Settings page is used to assign a static IP address to the hardware, and can also be used to
configure dynamic addressing provided that an address reservation has been applied to a DHCP server.

Figure 2-11 - Ethernet Settings
2-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP SYSTEM ADMINISTRATION
2.4.6 NETWORK DIAGNOSTICS

The Network Diagnostics page provides technicians with the ability to perform basic, common network
diagnostic tools from the BBC. Utilities are available to perform the following functions:

. Ping

. Traceroute

. DNS Test

. MySQL Test

2.4.6.1 PING
Ping provides the ability to perform a PING test against a specific address or resolvable name. Ping tests
are commonly used to verify connectivity to a particular device or server. To perform Ping test, simply
enter the address or resolvable name into the field provided and click Start Ping Test. A result window will
be displayed for the test indicating the sequence number, the time to live, and the response time.

Figure 2-12 - Ping Test

2.4.6.2 TRACEROUTE
Traceroute provides information for displaying a route (path) and measuring transit delays of packets
across the network. To perform a traceroute test, simply enter the address or resolvable name into the field
provided and click Start Traceroute. A result window will be displayed for the test indicating each hop and
route.

Figure 2-13 - Traceroute Test
MatrixBBC Programmers Guide (10/5/2012) 2-11

SYSTEM ADMINISTRATION SECTION 2: DEVICE SETUP
2.4.6.3 DNS TEST
DNS Test can be used to verify name resolution of an assigned resolvable name. Simply enter a
resolvable name into the provided field and click the Start DNS Test button.

Figure 2-14 - DNS Test

2.4.6.4 MYSQL
MySQL Test can be used to verify access to a MySQL Database either locally on an AspectFT server-
based target, or a remote MySQL database. Enter a host name (IP address or resolvable name), along
with the username, password, and table name. If connection is successful, table names accessible by the
provided credentials will be echoed back in the result window.

Figure 2-15 - MySQL Test

2.4.7 TIME SETTINGS
The Time Settings page is used to configure time related parameters for the MatrixBBC.
2-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP SYSTEM ADMINISTRATION
Figure 2-16 - Time and Date Settings

2.4.8 WEB SERVER CONFIGURATION
The Web Server Configuration page is used to set the port in which the BBC Control Panel is accessed. By
default, the MatrixBBC is available using Port 80, however, this can be changed to better secure the
system from unauthorized access. A configurable Device Label, which is displayed above the login fields
of the MatrixBBC page, is also available to help identify the device.

Table 2-4 Time and Date Settings Notes

Property Notes

Set System Time Used to set the system’s clock time in military format.

Set System Date Used to set the system’s clock date.

Set TimeZone/Region
Used to set the time-zone for the system clock. This should be set
to ensure that the MatrixBBC observes daylight savings for your
area.

Time Server Synchronization

Defines an NTP server address. This feature requires the
MatrixBBC to have some form of connectivity to an NTP server
either within your local area network, or via the Internet. The
default address is an Internet-based address for time
synchronization. This feature is separate from BACnet Time
Synchronization.
MatrixBBC Programmers Guide (10/5/2012) 2-13

SYSTEM ADMINISTRATION SECTION 2: DEVICE SETUP
Figure 2-17 - Web Server Configuration

2.4.9 BACKUP/RESTORE
The Backup/Restore page is used to backup and restore all MatrixBBC programming that has been
performed using NB-Pro. Using this feature, all created objects and uploaded SPL programs will be saved
as a single file and downloaded using your web browser.

Figure 2-18 - Backup/Restore

To perform a backup of your MatrixBBC, simply click the Download button. This will generate the download
of a single file which contains all programming for the device.

To perform a restoration of your programming, click Browse to find the file on your computer. Once found,
click the Upload button. In order for your programming to be restored, you must reboot the MatrixBBC via
the System Services page.
2-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP SYSTEM ADMINISTRATION
2.4.10 CLEAR CONFIGURATION
The Clear Configuration page is used to clear the entire database configuration of the MatrixBBC in the
event that database corruption, or accessibility to the MatrixBBC cannot occur. To clear the current
configuration, click the Clear button.

Figure 2-19 - Clear Configuration

This process will produce the same result as a Default Enable command performed on current generation
American Auto-Matrix controllers.
MatrixBBC Programmers Guide (10/5/2012) 2-15

BACNET TIME SYNCHRONIZATION SETUP SECTION 2: DEVICE SETUP
2.5 BACNET TIME SYNCHRONIZATION SETUP
By nature, all MatrixBBC controllers are capable of receiving and interpreting BACnet time-
synchronization messages from other BACnet devices that act as a time master.

More so, MatrixBBC controllers can be configured to transmit time-synchronization messages to other
BACnet devices or networks; effectively making the MatrixBBC a network time master. This may be
necessary if you have a network of lower-level devices that do not contain real-time clocks by default (such
as NB-VAV, select NB-ASC, or NB-SD devices).

Programming the MatrixBBC to perform this function consists of:
. Configuring time-synchronization-recipients
. Configuring the time-synch-interval

2.5.1 CONFIGURING TIME-SYNCHRONIZATION-RECIPIENTS
The Instance option allows enables the MatrixBBC to send BACnet time-synchronization messages
directly to a single BACnet device by referencing its the intended recipient’s device instance. Simply enter
the device instance number and click Add. To send the reference to the MatrixBBC, click the Update Value
button on the editor bar in NB-Pro.

The Address option enabled the MatrixBBC to send time-synchronizations to a a single BACnet device, a
specific BACnet network, broadcast a time to a single BACnet network, or broadcast to the global network.

Figure 2-20 - Entering Address References for Time-Synch-Recipients

Within the Address option, you have the ability to specify the address you wish to send to as BACnet MS/
TP, BACnet/IP, or BACnet over Ethernet.

The following minor sections provide examples of common configurations that are likely used based on
standard network topologies in BACnet.

2.5.1.1 MS/TP NETWORK TIME SYNCHRONIZATION
To send a local MS/TP network time-synchronization:
1. Select MS/TP form the Address area.
2. Enter a value of 255 in the MSTP/other field.
3. Enter a value of 0 in the Network field.
4. Click Add to add the entry to the list.
5. Click Update Value in NB-Pro to send the value to the controller.
2-16 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP BACNET TIME SYNCHRONIZATION SETUP
Figure 2-21 - MS/TP Network Synchronization Example

2.5.1.2 IP BROADCAST SYNCHRONIZATION
To send a global BACnet/IP network time-synchronization:
1. Select IP from the Address area.
2. Enter 255.255.255.255 in the IP Address field.
3. Enter 65535 in the Network field.
4. Enter your BACnet/IP Port Number into the Port field.
5. Click Add to add the entry to list.
6. Click Update Value in NB-Pro to send the value to the controller.

Figure 2-22 - IP Broadcast Synchronization Example

2.5.1.3 ETHERNET BROADCAST SYNCHRONIZATION
To send a global BACnet over Ethernet network time-synchronization:
1. Select Eth from the Address area.
2. Enter FF:FF:FF:FF:FF:FF in the Ethernet MAC field.
3. Enter 65535 in the Network field.
4. Click Add to add the entry to list.
5. Click Update Value in NB-Pro to send the value to the controller.
MatrixBBC Programmers Guide (10/5/2012) 2-17

BACNET TIME SYNCHRONIZATION SETUP SECTION 2: DEVICE SETUP
Figure 2-23 - Ethernet Broadcast Synchronization Example
2-18 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP BACNET TIME SYNCHRONIZATION SETUP
2.5.2 CONFIGURING THE BROADCAST TIME SYNC INTERVAL
The frequency of how often time synchronization messages are sent to the network is controlled through
the time-synch-interval property. This property specifies how often, in minutes, the MatrixBBC will send a
time-synchronization to the entries defined in time-synchronization-recipients.

Table 2-5: Broadcast Time Synch Interval Details

Property Valid Range Notes

time-synch-interval 1 - 1080 (minutes) A value of 0 disables time-synchronization message
transmissions.
MatrixBBC Programmers Guide (10/5/2012) 2-19

DAYLIGHT SAVING SECTION 2: DEVICE SETUP
2.6 DAYLIGHT SAVING
The MatrixBBC can be programmed to automatically update its clock based on daylight saving time. There
are several properties in the controller that correspond to daylight saving, and they can be configured to
meet rules in your regional location. By default, daylight saving configuration is disabled.

(RD) Daylight Saving Start Day, (RM) Daylight Saving Start Month, and (ST) Daylight Saving Start
Time control when daylight saving starts in your regional location. Several day options are provided based
on universal daylight saving schedules, as well as each month of the year, and a configurable time.

(ND) Daylight Saving End Day, (NM) Daylight Saving End Month, and (ET) Daylight Saving End Time
control when daylight savings ends in your regional location. Similar to the starting properties, the same
options are provided for defining end parameters.

Once these parameters are configured, the controller will automatically track when to begin and end
daylight saving based on its real-time clock.

CAUTION
While this feature is a ‘cut-over’ from NB-GPC
product technology, the embedded Linux operating
system already manages this provided it has
connectivity to the Internet in some form.
2-20 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP MANUALLY CONFIGURING DEVICE ADDRESS BINDINGS
2.7 MANUALLY CONFIGURING DEVICE ADDRESS BINDINGS
In BACnet, there can be situations where a device may not know of the existence of another device. Some
common examples include MS/TP devices that are configured as slaves, or even devices that co-exist on
a BACnet-network not reachable using broadcast addressing to resolve the location of the device. While
most properly configured BACnet global-networks may never need to worry about manually addressing
defining the location of a device, the situation could occur.

The MatrixBBC provides support to allow a programmer to manually define the address and location of a
device through the device-address-binding property. Up to a maximum of 24 manual address bindings
can be defined within this property.

To manually define a device, perform the following steps:
1. In NB-Pro, select the device-address-binding property.
2. Fill in the Device Instance into the first text field, then provide address information in the separated box

as shown below.
3. Repeats steps 2 to add additional bindings.
4. Click Update Value to send the configuration to the device.

Figure 2-24 - Device Address Binding Configuration
MatrixBBC Programmers Guide (10/5/2012) 2-21

BACNET MS/TP SLAVE PROXY SECTION 2: DEVICE SETUP
2.8 BACNET MS/TP SLAVE PROXY
The MatrixBBC supports the ability to act as an master proxy for BACnet MS/TP slave devices connected
to either RS-485 port. In BACnet, MS/TP devices configured as slaves are unable to respond to the
automated discovery processes supported by the protocol, given they do not accept or use the network
token for communications.

When configured, the MatrixBBC will answer an auto-discovery request on behalf of each slave connected
to it. This permits client software and front-ends such as NB-Pro and AspectFT the ability to perform
object-discoveries and “see” the devices on the network.

BACnet MS/TP Slave Proxy support is configured using NB-Pro. The following steps detail how to enable
this feature.

2.8.1 ENABLING MS/TP SLAVE PROXY
To enable MS/TP Slave Proxy, perform the following steps using NB-Pro:
1. Access the Device object of the MatrixBBC and find the slave-proxy-enable property.
2. By default, slave-proxy is disabled on the MatrixBBC. This property contains two binary flags. The first

binary flag corresponds to MS/TP Port 1, and the second binary flag corresponds to MS/TP Port 2.

Figure 2-25 - Slave-Proxy-Enable Default Configuration

3. Select the corresponding binary flag for the port. Using the supplied combo box, select True to enable
the port. Click Change to make the change effective in the list. Repeat these steps for enabling slave-
proxy for the other port.

Figure 2-26 - Modifying Slave-Proxy Configurations

4. Click Update Value to write the configuration change onto the MatrixBBC.
2-22 MatrixBBC Programmers Guide (10/5/2012)

SECTION 2: DEVICE SETUP BACNET MS/TP SLAVE PROXY
2.8.2 CONFIGURING THE MANUAL SLAVE ADDRESS BINDING
To allow the MatrixBBC to forward I-Am messages onto the network on behalf of each MS/TP slave node
connected to an enabled MS/TP network, you must configure the manual-slave-address-binding
property to define each slave node that the MatrixBBC provides access to.

To configure, perform the following steps using NB-Pro:
1. In the Device object, locate the manual-slave-address-binding property.
2. Fill in the Device Instance into the first text field, then provide address information in the separated box

as shown below.
3. Repeats steps 2 to add additional bindings.
4. Click Update Value to send the configuration to the device.

MatrixBBC will periodically check for the true existence of an MS/TP slave for the binding you reference in
this table. Once verified, the device will then be inserted into the slave-address-binding property as a
verification that the device is now under proxy.

Figure 2-27 - Configuring the Manual-Slave-Address-Binding Table

CAUTION
The device you are referencing must be configured
as an MS/TP slave device, otherwise proxy
services will not be provided for that device.

NB-ASC Product Family devices can participate
provided the product is utilizing firmware revision
v6.08 or newer and has been appropriately
configured for slave mode.

NB-GPC Product Family devices can participate
provided the product is utilizing firmware revision
v2.06 or newer and has been appropriately
configured for slave mode.
MatrixBBC Programmers Guide (10/5/2012) 2-23

BACNET MS/TP SLAVE PROXY SECTION 2: DEVICE SETUP
2-24 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES

This section describes File and Program objects within the MatrixBBC and how they represent certain
configuration and programmatic items within the platform. A complete reference of how to use and write
SPL programs is also reviewed in this section. The MatrixBBC supports a maximum of 64 Program
objects.
IN THIS SECTION
Overview .. 3-3
SPL Programming.. 3-4
 Creating Programs in the MatrixBBC.. 3-4
Introduction to SPL .. 3-5
The Parts of SPL Programs ... 3-6
Program Names... 3-7
The .SPL, .PLB and .LST Files .. 3-8
Properties and Registers ... 3-9
Compiler Control Statements ... 3-10
Comments...3-11
Labels .. 3-12
Expressions ... 3-13
Program Statements Overview .. 3-15
Assignment Statements and Equates .. 3-17
Iteration, Branching and Subroutines... 3-19
Program Delays ... 3-22
Execution Error Control.. 3-23
Debugging Statements... 3-25
Program Control Properties ... 3-26
Using SPL with BACnet Objects .. 3-29
Fundamentals of SPL in BACnet ... 3-30
Working with Object Properties.. 3-32
Object Syntax Reference ... 3-37
Advanced BACnet SPL Functions ... 3-40
Troubleshooting Your SPL Program... 3-43
 Using SECTION Statements ... 3-43
 Using Single-Step Mode ... 3-44
 Reference the .LST File .. 3-46
MatrixBBC Programmers Guide (10/5/2012) 3-1

SECTION 3: PROGRAMS AND FILES
3-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES OVERVIEW
3.1 OVERVIEW
File objects are used to store compiled data for the MatrixBBC to use and execute. There are three specific
applications where File objects are utilized.

1. In cases where an SPL Program has been loaded into a File object, a corresponding Program object
invokes the file to execute the sequence and provides detailed feedback to users regarding the status
of the program.

2. In cases where a site requires customization, LOGO files can be loaded into File objects which
allowed connected SBC-STAT devices to display custom logos, list files, or other data.

3. In cases where users wish to apply firmware updates to the MatrixBBC, a designated File object exists
that allows users to upload a firmware file.

The following information discusses each application.
MatrixBBC Programmers Guide (10/5/2012) 3-3

SPL PROGRAMMING SECTION 3: PROGRAMS AND FILES
3.2 SPL PROGRAMMING
The MatrixBBC supports the ability to accept line-by-line custom programming using the SPL
Programming Language. Programs are written in the SPL Editor (located within NB-Pro), and are then
uploaded to File objects that exist for each corresponding Program. As the program is loaded, a
corresponding Program object provides status feedback regarding the program. The relationship between
File and Program Objects is illustrated in the table below.

3.2.1 CREATING PROGRAMS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
The MatrixBBC will support a maximum of 64 Program objects. Program objects are created by the
technician when necessary, and are done in a dynamic manner.

To create a Program object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MI) Max Program Objects property. By default, this value is set to 0, indicating no Program

objects exist.
3. Write the number of total Program objects you wish to have in the MatrixBBC. For example, if you wish

to have 10 Programs, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Program objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

3.2.2 LOADING PROGRAMS INTO MATRIXBBC
When a program is initially uploaded to the MatrixBBC using NB-Pro’s Upload/Download utility, the
program will not execute until a user directly affects the current program-state. To initially execute the
program, set the program-state property to Load.

Once a program has been loaded, the program will continue to run. In the event that the MatrixBBC
controller is reset (via warm-start, restart button, power cycle, etc.), the program will start automatically
without user intervention.

Table 3-1: File and Program Object Correlation Examples

File Object Program Object

File, Instance 1 Program, Instance 1

File, Instance 2 Program, Instance 2

File, Instance 3 Program, Instance 3

File, Instance 4 Program, Instance 4

File, Instance 5 Program, Instance 5

File, Instance 6 Program, Instance 6

File, Instance 7 Program, Instance 7

File, Instance 8 Program, Instance 8
3-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES INTRODUCTION TO SPL
3.3 INTRODUCTION TO SPL
The MatrixBBC leverages extension of the SAGE Programming Language to perform custom
programming sequences. SPL support has been included in the MatrixBBC to allow users to create line-
by-line, BASIC-like written sequences that cannot be carried out using the library of built-in logic objects.

The SPL Programming language support for the MatrixBBC mirrors functionality found in MatrixBBC
products and supports a large number of features, summarized below:

. Unlimited number of program lines up to a maximum code block size of 8kb per program.

. Up to 255 custom program properties (initialized using the PROP statement)

. Indirect references within the program up to 256 references

. Floating point math and type coercion

. Re-entrant subroutine calling ability for multiple programs

. Up to sixteen (16) program registers capable of 32 bit primitive BACnet datatype values.

. Six (6) Level expression stack to resolve nested expressions

. Asynchronous read/write of standard and non-standard BACnet object properties
MatrixBBC Programmers Guide (10/5/2012) 3-5

THE PARTS OF SPL PROGRAMS SECTION 3: PROGRAMS AND FILES
3.4 THE PARTS OF SPL PROGRAMS
An SPL program consists of a collection of structures that are used by the SPL compiler and execution
system. An SPL program consists of the following items:

. The program source (SPL) file, which is the written sequence or code.

. The Program Logic Block (PLB) file, which is the compiled source code loaded to the controller.

. The LIST (LST) file for troubleshooting loaded programs that may be aborted or "stuck"

These components are explained in the following sections of this chapter.
3-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES PROGRAM NAMES
3.5 PROGRAM NAMES
SPL programs must have an associated name that is limited only by the operating system. The valid
characters for program names are shown below:

. A-Z (uppercase letters “A” through “Z”)

. a-z (lowercase letters “a” through “z”)

. 0-9 (numbers “0” through “9”)

. _ (under bar)

. (space)

. . (period)

. $ (dollar sign)

Program names are case-insensitive, meaning lowercase letters are treated the same as uppercase
letters in program object names (e.g., "abc" is the same as "ABC").
MatrixBBC Programmers Guide (10/5/2012) 3-7

THE .SPL, .PLB AND .LST FILES SECTION 3: PROGRAMS AND FILES
3.6 THE .SPL, .PLB AND .LST FILES
SPL programs must reference a Program Logic Block (PLB). The PLB is a binary data file that contains
compiled binary pseudocode in a form which can be executed by the controller. This file is created by the
SPL Compiler after you create, edit and compile an ASCII text file (i.e., an SPL source file) which contains
program logic statements that are easily edited and understood by programmers.

ASCII SPL source code files have the .SPL extension and Binary Program Logic Block files (PLBs) have
the .PLB extension.

The name given to the SPL file can be as long as allowed by the operating system on your computer.
However, the controllers impose a limitation on file length. When a PLB is loaded into the MatrixBBC, the
file name is shortened to 8 characters. If the name was originally longer, only the first 8 characters will be
used for the program name.

The source file contains SPL program logic statements which are discussed in detail later in this section.
SPL source code can be created and/or edited by using the SPL editor built into NB-Pro. The number of
lines in an SPL source file is unlimited. Compiled PLBs cannot exceed 8kb in size.

You may choose to have the SPL Compilers optionally create a list file during the compile process. The list
file is an ASCII text file that contains the source code statements along with the pseudocode and their
respective relative locations in memory and any error messages generated by the compiler. List files are
useful in debugging the execution of SPL programs.

NOTE
If any errors are generated during the com-
piling process, a PLB is not created.
3-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES PROPERTIES AND REGISTERS
3.7 PROPERTIES AND REGISTERS
Each SPL program may have up to 255 user-defined properties for storing local data for control
sequences. These properties, created as non-standard properties, can be addressed at an operator
workstation or web-server.

All programs have 16 registers (%A-%P) and a number of program control properties. To an operator,
program registers always begin with a percent sign (%) and program control attributes always begin with a
dollar sign ($). Registers can also be used to hold or present data to an end-user.
MatrixBBC Programmers Guide (10/5/2012) 3-9

COMPILER CONTROL STATEMENTS SECTION 3: PROGRAMS AND FILES
3.8 COMPILER CONTROL STATEMENTS
Compiler control statements are non-executable directives to the SPL compiler that it uses to control the
generation and format of SPL compiler listings and PLBs. The various SPL compiler control statements
are summarized below:

#TITLE "titletext"
#NOLABELS
#LABELS
#BBC

Compiler control statements always begin with the pound sign character (#). They must begin in the left-
most column.

#TITLE "titletext"

The title directive is used to put the specified titletext at the top of each page of a compiler list file in order
to help identify the program logic. The text string titletext must be enclosed in double quotation marks (")
and can be up to 79 characters long.

#NOLABELS
#LABELS

The no labels directive commands the SPL compiler to not generate pseudo-code for statement labels in
the PLB file. Using this command results in smaller, faster executing PLBs, but eliminates the ability to
visually locate labels in the PLB files during troubleshooting. The #LABELS command turns on the
inclusion of label pcodes in the PLB. In order to conserve RAM and optimize execution, #NOLABELS is
the default for #SOLODX, #SOLOGX and #BBC. #LABELS remains the default for #SAGE. The inclusion
of label pcodes can be turned on/off throughout the SPL source file.

#BBC

The #BBC commands identify the target platform for the resulting Program Logic Block (PLB), which in
this case is the MatrixBBC. A summary of statements, terms, operators and features supported by the
compiler for each target is shown in Table 1-1. The #BBC command can appear any place in the SPL
source file, but it is recommended that they appear early in the source file, i.e., directly after the #NOLIST
and/or #PLBxx commands if they are included.

When it executes, the SPL compiler requires a block of RAM in addition to what the executable SPL
module uses. The additional block is used to build the PLB. The amount required depends on the
maximum anticipated size of the PLB.
3-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES COMMENTS
3.9 COMMENTS
All lines in SPL programs that have a semicolon (;) in the left most column are comments. They are for
documentation purposes only and are ignored at compile time. The generous use of comment statements
within your programs will make them more readable and easier to troubleshoot, especially if you are not
the person doing the troubleshooting.

As a guideline, the top lines of programs should be reserved for program identification comments. This
area may contain information such as:

. the name of the program

. the date the program was written

. the name of the author

. what the program does

. the meaning/use of program properties

. the meaning/use of program registers

. any assumptions made by the author

. any input variables used by the program

. any output values calculated by the program

. an edit trail indicating any modifications made to the program logic, when they were made, and by
whom

. in general, any information that may prove useful to someone looking at the program for the first time

In addition to using comments at the beginning of your program logic, it is also helpful to create a series of
comment lines prior to any program segments with logic that may need special explanation. The extra
effort you take in adding useful comments to your programs is well worth the benefits you (or someone
else) will reap in the future.
MatrixBBC Programmers Guide (10/5/2012) 3-11

LABELS SECTION 3: PROGRAMS AND FILES
3.10 LABELS
SPL programs are composed of one or more statements which define the actions and logical operations
that the program is to take when it is executed. SPL program statements are grouped into lines which
contain a single program statement. These lines may be labeled with symbolic names to identify them.
Typically this is done so that GOTO and other branching statements can refer to them.

Labels cannot use any of the reserved names that identify SPL statements. Labels are case-insensitive,
meaning that the label ABC is treated the same as the label ABc or abc. Labels must begin in the left
most column of the line. Labels may contain up to eight characters or up to eight characters and numbers.
Labels can consist of the following:

. A through Z

. a through z

. 0 through 9 (not as the first character)

. $, . and _ characters.

Labels cannot begin with the numbers 0-9. If a line contains any statement following the label, then the
statement must be separated from the label by one or more TABs or spaces. Labels may optionally end
with a colon character (:), which is not counted in the length of the label.

The lines of an SPL program may be labeled with a symbolic name to identify that line, typically so that
GOTO and other branching statements can refer to it. Labels may be symbolic and numeric, or symbolic
and can be up to 8 characters long. Symbolic labels may not use any of the reserved names that identify
SPL statements.

The following program fragment demonstrates several labels:

C=[AI1.PRESENT_VALUE]
LABEL1

A=[AV1.PRESENT_VALUE]
B=A+3.0
IF B >32.0 THEN LABEL003
C=5

LABEL2: IF [AI13.PRESENT_VALUE] >72.0 THEN LABEL3
SWAIT 30
GOTO LABEL2
3-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES EXPRESSIONS
3.11 EXPRESSIONS
Expressions are symbolic formulas which represent a chain of arithmetic calculations on data from various
sources. Expressions are used to convey values for parameters in many of the primitive statements in the
SPL language. SPL expressions can contain an arbitrary number of terms and operators which may
represent mixed mode arithmetic (i.e., integer, floating point and fixed point). SPL automatically performs
type coercion on mixed mode values.

Expression evaluation is performed from left to right. Up to six levels of nesting (i.e., the use of
parentheses) may be used in expressions to define an order or precedence for evaluation. The expression
within the innermost set of parentheses is evaluated first from left to right. This procedure continues
outward until the expression within the outermost set of parentheses is evaluated from left to right.

Expressions may contain constants, variables, registers, named object attributes, references, tables, built-
in functions and arithmetic and logical operators.

In a very general sense, expressions are composed of terms and operators. In the simplest case, an
expression is simply a term with no operators. An expression is defined as follows:

 expression ::= term or
 expression ::= term operator expression

An expression may also be nested within parentheses and used as a term anywhere within an expression.
Up to six levels of parentheses may be used.

The syntax for a nested expression is shown below.

 (expression)

The evaluation of nested expressions occurs first from the innermost set of parentheses and continues
outward. Expressions that are at similar levels of nesting are simply evaluated from left to right.
The code below shows some complex SPL programming examples using nested expressions.

A=MAX(MEAN(B,C,D), MEAN(E,F,G))
H=SQRT((B**2)+(C**2))
[.AA]=([.BB]/255)*[AI1.PRESENT_VALUE]+C

Because expressions may contain terms that are objects on networks, an expression does not necessarily
have to be completely resolved before execution is passed to another program. Such network accessing is
processed asynchronously, causing only the program using the value to be delayed until the value has
been fetched. This provides for a fair method in dealing with network-intensive programs, and not
penalizing other programs by waiting for a network device object value.

Terms in expressions may be one of several possible types, indicating one of several possible sources of a
value to be used during expression evaluation. In general, each term has a data type as well as a value.
Data types identify the way in which the values are represented numerically, and may imply additional
hidden operations or coercions to be performed when arithmetic operations are required between
dissimilar types. The types of terms that can be used in expressions are as follows:
MatrixBBC Programmers Guide (10/5/2012) 3-13

EXPRESSIONS SECTION 3: PROGRAMS AND FILES
. constants

. named terms

. registers

. program control attributes

. user-defined program attributes

. named object attributes

. BACnet object properties

. references

. virtual attributes

. tables

. functions

. nested expressions

Each type of expression term is explained in detail in the following sections.
3-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES PROGRAM STATEMENTS OVERVIEW
3.12 PROGRAM STATEMENTS OVERVIEW
This section is intended to familiarize you with all of the SPL programming statements by organizing them
into logical groups based on the functions that they perform. Program statements fall into the following
categories:

. attribute definitions and references

. assignment statements

. iteration control, program branching and subroutines

. program delays

. printing, logging and alarming

. job execution

. spooling

. trending control

. program execution control

. execution error control

. debugging statements

Attribute definitions and references are used to declare user-defined program attributes and save the
values of attributes to the program’s attribute initial value (INI) file.

Assignment statements are used to assign the value of an expression to a variable. This type of program
statement is characterized by the use of an equal sign (=).

Iteration control, program branching and subroutines are statements perform a statement or group of
statements some number of times, change the order in which the logic is executed, or transfer program
control to another portion of the program (a subroutine).

Program delays are statements which suspend program execution, either for a set amount of time or until
certain conditions are met.

Printing, logging and alarming refers to statements that give you the ability to print information to a port, log
information to a file, or generate formatted alarms of definable alarm classes.

Job execution refers to statements that give you the ability to execute any SAGEMAX job from within the
SPL program execution environment.

Spooling refers to commands which offer the ability to send specified files to the printer.

Trending control refers to program statements that can control the execution of trends from a program.

Program execution control refers to statements that can start, stop and prepare programs to be executed.

Execution error control refers to program statements that allow you to define a course of action for PEX
when network access errors occur.

Debugging statements refer to programming statements that can be used to aid in the diagnosis of
program logic errors.

Each SPL programming statement is individually explained, including sample SPL statements in the
following pages.
MatrixBBC Programmers Guide (10/5/2012) 3-15

PROGRAM STATEMENTS OVERVIEW SECTION 3: PROGRAMS AND FILES
Table 3-2 Program Statements

Format Description

variable = expression assignment statement

ERRORABORT trap condition - abort on errors

ERRORWAIT trap condition - wait until no error

symbol EQU expression symbolic equate statement

GOSUB label go to internal subroutine

GOTO label unconditional branch

IF expr THEN label conditional branch if expr is true

IF expr THEN label1 ELSE label2 conditional branches if expr is true or false

LOOP register,label iteration control

MWAIT expression wait a certain amount of minutes

ON expression GOTO label0,label1...labeln indexed conditional branches

ONERROR label trap condition - branch if error occurs

PROP progproperty,BACnetDatatype declares a BACnet property for BACnet based devices

RETURN return from a subroutine

SECTION number section marker used for debugging

STOP halt execution of this program

SWAIT expression wait a certain amount of seconds

WAIT (expression) wait until an expression is true, then go on
3-16 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES ASSIGNMENT STATEMENTS AND EQUATES
3.13 ASSIGNMENT STATEMENTS AND EQUATES

3.13.1 STANDARD VALUE ASSIGNMENT
variable = expr

SPL allows various forms of value assignment statement. In each case, a variable on the left side of the =
(equal sign) is assigned the new value dictated by the expression on the right side. The right side
expression produces a value and a data type. Because automatic data type coercion may occur during
evaluation, the data type of the expression may not match the data type of the variable on the left side. In
this case the data type and value from the expression may have to be coerced into the variable's data type
according to certain rules. The table below summarizes the conversions in general:

*Different fixed data type.

Integers and time data types are treated as fixed types. The table above does not reflect that there are 20
distinct types of fixed types, i.e. 10 decimal point positions each for signed and unsigned types.

When the left side variable is a local program attribute, coercion of the expression into the proper data type
is done automatically by PEX. When the left side variable is a register, unless the data type of the result is
converted according to the table above, the data type of the register is automatically changed to the data
type of the result. When the left side variable is any other type of object, the result must be converted
according to the table or incorrect values may be assigned to the variable. For example, if the left side
variable is a point whose data type is F9H (xxxxxxx.xxx) and the expression has a data type of F7H
(xxxxxx.xxxx) then a RETYPE (F9H) must be done so that the value assigned to the variable is not 10
times too large (in this case.)

There are several forms of assignment statements that may be used in SPL. These are summarized
below:

Left Side Right Side Effect

fixed float left=FIX(right)

float fixed left=FLOAT(right)

fixed* fixed left=RETYPE(right)

register = expression A = B+C

;programattribute = expression ;CV = B+C

namedobject = expression OAT = B+C

namedobject = expression [ZONE TEMP] = B+C

namedobject = expression [1STFLOOR] = B+C

\objecttype\namedobject = expression \VR\OAT = B+C

namedobject;attribute = expression [LOOP;SP]= B+C

\objecttype\namedobject;attribute = expression \PT\LOOP;SP = B+C

REF(expression) = expression REF(6) = B+C

&tablename(expression) = expression &CLAIREX(29) = B+C
MatrixBBC Programmers Guide (10/5/2012) 3-17

ASSIGNMENT STATEMENTS AND EQUATES SECTION 3: PROGRAMS AND FILES
At first there would appear to be a conflict in syntax between local attribute references that are used as
variables on the left hand side of assignment statements, e.g., ;AT=expression, and comments since both
begin with semicolons. The difference in syntax between the two is that comments begin in the left most
column and local program attribute references used as variables must have at least one leading space or
tab. In order to avoid confusion, local program attribute references can be enclosed in brackets, i.e.
[;AT]=expression.

3.13.2 EQU
symbol EQU expression

EQU (Equate) provides a simple method to assign substitute names to commonly used point references in
an SPL program, providing the ability to easily read and interpret an SPL program in a more basic form.
EQU is a symbolic equate in its rawest form.

EQU statements must be defined in a program before they are used, because the compiler considers all
terms that are not SPL keywords, numeric values or SPL symbols to be object names. The symbol part of
the EQU statement can be up to 16 characters in length, which must all be printable characters (A-Z, 0-9,
!, @, etc.) and cannot begin with a digit. The right-hand side of the expression can be up to 32 printable
characters and can be a programmatic expression or point data location (e.g. FE01;CV).

The code below illustrates the use of the EQU statement in an SPL programming example:

FANSTATUS EQU [BI1.PRESENT_VALUE]
FANOUTPUT EQU [BO1.PRESENT_VALUE@8]

;start of program
L0: SWAIT 1
 FANOUTPUT = 1
 SWAIT 5
 FANOUTPUT = 0

UNS(x1,x2,x3,x4,x5,attribute) = expression UNS(1,0,0,0,FB00h,CV) = B+C
3-18 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES ITERATION, BRANCHING AND SUBROUTINES
3.14 ITERATION, BRANCHING AND SUBROUTINES

3.14.1 GOTO STATEMENT

GOTO label

where:
label is the label of the point to which program execution will be switched

The GOTO statement is an unconditional branch statement that causes program logic to jump to some
other location that is identified by a label.
The code below illustrates the use of the GOTO statement and shows a sample SPL programming
example. It may increase the readability of your program logic if you add a blank line after GOTO
statements.

 :
L1: C = A+B

GOTO L3

L2: C = B-A
L3: D = C*2
 :

3.14.2 IF... THEN... {ELSE...} STATEMENT

IF expr THEN label1 {ELSE label2}

where:
expr is the logical expression which determines conditional branching behavior
label1 is the label to jump to if expr evaluates to true
label2 is the label to jump to if expr evaluates to false (optional)

The IF... THEN... statement is a conditional statement that causes the program logic to jump to some other
location identified by a label if a certain condition is true. If the condition is false, execution falls through to
the next sequential statement. If the optional ELSE statement is included, then program execution will
jump to the label following the ELSE statement if the condition evaluates to false.

The code below illustrates the use of the IF... THEN... ELSE... statement and shows its usage in an SPL
programming example.

IF (DAYOFWEEK==SUN) THEN L3
L0: IF (A>B) THEN L1 ELSE L2
L1: C=A+B

GOTO L3

L2: C=B-A
L3: D=C*2
 :
MatrixBBC Programmers Guide (10/5/2012) 3-19

ITERATION, BRANCHING AND SUBROUTINES SECTION 3: PROGRAMS AND FILES
3.14.3 ON... GOTO... STATEMENT

ON expr GOTO label0,label1,label2,label3,....

where:
expr is the expression which determines which label is selected
label0,label1,label2,label3,.... are the labels of the sections to which program control can be

switched

The ON/GOTO statement is a conditional statement that identifies a series of indexed labels to which PEX
transfers control based on the value of an expression. The code below illustrates the use of the ON/GOTO
statement.

ATTR ER,07
 :
ON INT(B-10) GOTO L0,L1,L2
:ER=1
PRINT 13,226,"Unsuccessful."
GOTO DONE

L0: D = (C+1)/2
GOTO MERGE

L1: D = (C+20)/2
GOTO MERGE

L2: D = (C+50)/2
MERGE: PRINT 13,226,"Success. D=%?%",D
DONE: STOP

The indices of the ON/GOTO statement are zero-based. In addition, if an index evaluates to a number that
is greater than the number of indices, program execution continues with the next line of the program.

3.14.4 LOOP STATEMENT

LOOP register,label

where:

register is the number of times the loop is to be executed
label is the program label to which execution will jump

The LOOP statement is an iteration control statement that performs a “decrement register and jump if not
zero” function using a specified register and a program label. The LOOP statement is a combination of an
assignment statement (e.g., A = A-1) and a conditional statement (e.g., IF A>0 THEN Continue).

The code below illustrates the proper use of the LOOP statement in a sample SPL programming example.

A = 100
B = 0
3-20 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES ITERATION, BRANCHING AND SUBROUTINES
CALC: B = REF (A-1)+B
LOOP A, CALC
REF (100)=B/100

3.14.5 GOSUB STATEMENT

GOSUB label

where:
label is the text label which specifies the starting point of the subroutine

The GOSUB statement is used to call a subroutine in the current PLB. A RETURN statement is used to
terminate the internal subroutine and return execution control to the statement directly following the
GOSUB. The subroutine name is actually a label for which all the naming conventions apply.

The code below illustrates the syntax of the GOSUB statement and shows its use in a sample SPL
program segment:

ATTR AR,0FAH
A=65

READIT: D=&DuctDiam(A-1)
GOSUB AREACALC
&DuctArea(A-1) = ;AR
LOOP A, READIT
 :

AREACALC: ;AR = PI*(D*D)/4
RETURN

3.14.6 RETURN STATEMENT

RETURN

The RETURN statement is used in conjunction with the CALL and GOSUB statements.
MatrixBBC Programmers Guide (10/5/2012) 3-21

PROGRAM DELAYS SECTION 3: PROGRAMS AND FILES
3.15 PROGRAM DELAYS

3.15.1 SWAIT AND MWAIT STATEMENTS

SWAIT expr

where:
expr is the number of seconds to delay program execution

MWAIT expr

where:
expr is the number of minutes to delay program execution

The SWAIT and MWAIT statements are used to cause a timed delay in program execution. These
statements each have a single argument which represents a number of seconds or minutes (respectively)
that must pass before program execution continues. The time delay can be viewed as it counts down from
the $D program control attribute. This attribute shows all time delays in seconds. Once the delay reaches
zero, the next program statement is executed.

The code below illustrates the proper use of the MWAIT and SWAIT statements. Sample SPL
programming examples are also shown.

L0: IF (SWITCH==1) Then L1
MWAIT 5
GOTO L0

L1: [PROG1;MN]=[PROG2;SP]+5.0

3.15.2 WAIT STATEMENT

WAIT expr

where:
expr is the logical expression that will determine when the WAIT will finish

The WAIT statement is a conditional statement that halts further program execution until the expression
specified in the argument is true.

The code below illustrates the syntax of the WAIT statement and shows a sample SPL programming
example.

L0: WAIT $ALARMS
CALL Notify

L1: CALL Clear, STICK
IF $ALARMS THEN L1 ELSE L0
3-22 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES EXECUTION ERROR CONTROL
3.16 EXECUTION ERROR CONTROL

3.16.1 ERRORABORT STATEMENT

ERRORABORT

The ERRORABORT statement is an error control statement that causes the program executor to abort the
program when any trappable or non-trappable error is detected. (See also Section 3.16.2:ERRORWAIT
Statement and Section 3.16.3:ONERROR Statement).

There can be multiple ERRORABORT and ERRORWAIT statements within a program. This allows the
aborting of errors to be turned on and off. Unless an ERRORWAIT statement is included in a program, the
ERRORABORT statement is in effect.

All errors that are not trappable (e.g., no such object name, invalid operation, etc.) will always cause the
program to be aborted.

The code below illustrates the syntax for the ERRORABORT statement and shows its use in a simple SPL
program segment:

ERRORABORT
[AI1.PRESENT_VALUE]=55.255

3.16.2 ERRORWAIT STATEMENT

ERRORWAIT

The ERRORWAIT statement is an error control statement that allows the programmer to specify what PEX
should do when it encounters a trappable error. If the ERRORWAIT statement is included in a program
and PEX detects a trappable error, then the statement that caused the trappable error is re-executed
forever until the error condition no longer exists

There can be multiple ERRORWAIT and ERRORABORT statements within a program. This allows the
aborting of errors and error waiting to be staggered throughout the program. Unless an ERRORWAIT
statement is included in a program, the ERRORABORT statement is in effect.

The code below illustrates the syntax of the ERRORWAIT statement and shows it being used in an SPL
program segment:

ERRORWAIT
[AI1.PRESENT_VALUE]=55.255
 :

3.16.3 ONERROR STATEMENT

ONERROR label
MatrixBBC Programmers Guide (10/5/2012) 3-23

EXECUTION ERROR CONTROL SECTION 3: PROGRAMS AND FILES
where:
label is the label of the code to be executed when a trappable error occurs

The ONERROR statement identifies a label to which PEX transfers control whenever it detects a trappable
error (see Appendix B). The ONERROR statement is in effect only for the statement that precedes it.
(See also Section 3.16.1:ERRORABORT Statement and Section 3.16.2:ERRORWAIT Statement). When
an error is detected, the error code is placed in the program’s $E control attribute by PEX. ONERROR
statements take precedence over ERRORWAIT statements. The $E program control attribute should be
reset to zero before leaving the error code handler.

The code below illustrates the syntax of the ONERROR statement and shows an SPL programming
example.

Getit: ;$E = 0
A = ZONE_TEMP;CV
ONERROR Err

L1: B=A+10
 :

Err: IF (;$E<>5) THEN END
A=72.0
GOTO L1

End: STOP

NOTE
The ONERROR statement can only be used
with trappable errors such as a timeout, a
CRC or checksum error, NAK responses,
data rejection, temporarily blocked states,
dialer busy states and failed to connect
errors. Any other program execution errors
cause the program to abort.
3-24 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES DEBUGGING STATEMENTS
3.17 DEBUGGING STATEMENTS

3.17.1 SECTION STATEMENT

SECTION number

where:
number is the number designation given to the section

The SECTION statement is a debugging statement that stores the number argument in the $S program
control attribute of the program. This command can be placed strategically at multiple locations in the
program to be debugged. By using unique numbers in the statements, you can track the progress of the
program through various logical sections by monitoring the $S program control attribute.

The code below illustrates the syntax of the SECTION statement and shows an SPL programming
example:

SECTION 1
A = REF (0)

L1: SECTION 2
B = B + REF (A-1)
LOOP L1
SECTION 3
 :
MatrixBBC Programmers Guide (10/5/2012) 3-25

PROGRAM CONTROL PROPERTIES SECTION 3: PROGRAMS AND FILES
3.18 PROGRAM CONTROL PROPERTIES
All program control properties provide the means to exmaine, monitor, and troubleshoot a compiled
program. The following table provides a high level overview of each property, its use, and capabilities.

Table 3-3 Program Control Attributes

Control Properties Meaning

program-state

Program State
Enumerations

0=Idle
1=Loading
2=Running
3=Waiting
4=Halted
5=Unloading

Program State defines the current activity of a program which
may be executing logic.

Idle - defines that the program object is not actively executing
compiled programming code. This state may appear when no
program has been uploaded to the corresponding file region,
when the program has not been loaded into memory to run.
Loading - defines that a request has been made from the
network through the program-change property to load the
program for execution. This state will continue to appear until
the program has been fully loaded into upper memory for
execution.
Running - defines that the program is actively executing logic.
Waiting - defines that the program is currently in a waiting
condition. This can occur upon the execution of an SWAIT,
MWAIT, or the wait of a response from a remote controller for
information.
Halted - defines that the program has halted the execution of
logic. This can occur if a compiled program aborts due to a
trappable error, an error in developed logic, or other local
matter which can be troubleshot using other properties
corresponding to the program object. A program may also be
halted through a human request by direct editing of the
program-change property.
Unloading - defines that the program is being actively
unloaded from upper memory. This occurs when an Unload
request is made to the program-change property.

program-change

Program Change
Enumerations

0=Ready
1=Load
2=Run
3=Halt
4=Restart
5=Unload

Program Change enumerations are used to user command a
program into a specific state. For example, this property can be
written to restart a program, manually halt a program, etc.

Ready - defines that the program is ready to have information
loaded for execution or debugging. This is a read-only state
and cannot be commanded.
Load - used to load a program into upper memory for
execution.
Run - used to force a program to run logic. This command is
commonly only used for Single-Step Mode Debugging, or can
be used to command a program to run when it executes a
STOP statement.
Halt - used to stop a program from executing logic.
Restart - used to restart a program from the very first line of
logic.
Unload - used to unload a program from upper memory.
3-26 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES PROGRAM CONTROL PROPERTIES
reason-for-halt

Reason for Halt
Enumerations

0 = Normal
1 = Load Failed
2 = Internal
3 = Program
4 = Other

Reason for Halt properties provide a generalized reason for a
program that may have been halted.

Normal - defines that the program is in a healthy condition to
execute logic.
Load Failed - defines that the program failed to load due to
resource constraints, or a possible OS issue.
Internal - defines that an internal error caused the program to
halt. Further properties listed below can be used as an aide in
troubleshooting why the program halted.
Program - defines that the program halted due to a Halt
command being written to the program-change property.
Other - defines that an external condition caused the program
to halt

description-of-halt Provides a generic, English-readable reason for why the program has halted.

program-location

Provides a string-based message which provides the current location or portion of code
that the program object is executing. Note that the ‘Sec #’ portion of this property provides
the section number of logic being executed, provided that you have implemented
SECTION statements into your program logic. The second portion of the string is a hex
offset which can be referenced in the.LST file of your compiled program for
troubleshooting.

description Provides a gen earl description that can be assigned to your program.

$instance-of Provides a reflection of the name of the program that is loaded.

status-flags Provides general health information for the program object.

reliability Provides reliability information regarding the health of the program object.

out-of-service Always reports false and cannot be modified.

profile-name Provides a profile-name reference for the MatrixBBC.

($1) Enable Single
Step Mode

Debugging point for troubleshooting and testing your program. When set to Yes (1), and a
program has been loaded, lines of your SPL program are executed one line at a time. Once
a line has been executed, use the program-change property and set it to Run (2) to have
the program execute the next line of code.

Once you have finished debugging your SPL program, set this property to No (0) to allow
the program to execute all lines automatically.

($D) Delay Time
Remaining

Provides a count down timer when the program currently executes and observes an
SWAIT or MWAIT statement. Countdown information is displayed as time in seconds.

($E) Error Code Provides a generic error code for troubleshooting.

($F) Device Instance
Not Found

Provides feedback of a device that may not be reachable using remote fetching commands
when executing. If your program uses an ERRORWAIT statement and a timeout occurs
when fetching information from a remote device, this property will reflect the device
instance for the BACnet device that cannot be communicated with. If your program uses
ONERROR statements, the last device failed to be communicated with will be reported
through this property.

Table 3-3 Program Control Attributes
MatrixBBC Programmers Guide (10/5/2012) 3-27

PROGRAM CONTROL PROPERTIES SECTION 3: PROGRAMS AND FILES
The $S control attribute is another special control attribute which reflects the current section number of the
program. The SECTION statement is used to set a portion of the program-location property to reflect the
section number that the program is currently executing. This control attribute can be used in diagnosing
errors in your program logic. By using SECTION statements at strategic locations in the logic (e.g., before
and after loops, conditional statements, calls to subroutines, etc.), you can check the progress of the
program execution through examination of the program-location property. The example below illustrates
the use of SECTION statements.

SECTION 1
CALL INITIALIZE
SECTION 2
CALL CALC_LOOP
SECTION 3
CALL PROCESS_LOOP
SECTION 4
CALL SUBMIT_JOB
SECTION 5
STOP

($W) Trappable Error
Action

Provides read-only status as to whether or not the program is subject to abortion if an error
is encountered. Trappable errors are commonly catch-able when using ERRORWAIT and/
or ONERROR statements in your program. If these commands are present, this property
will reflect that the program will Wait on Error, otherwise, Abort on Error.

($N) Number of
Program Properties

Provides feedback relative to the number of custom properties that have been generated or
created through use of the PROP statement within a loaded program.

Table 3-3 Program Control Attributes
3-28 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES USING SPL WITH BACNET OBJECTS
3.19 USING SPL WITH BACNET OBJECTS
SPL has features designed specifically for creating program that work with BACnet devices. From within
your program, you may define custom properties. These properties can be used within the program and
are also visible to other controllers on the BACnet network just like any other property in the controller.
Statements exist which allow you to reference properties that exist on the host controller as well as on
other controllers on the network. Functions exist that allow you can generate object identifiers during
program execution. These features combine seamlessly to allow you to work with any BACnet properties
from within your SPL program.
MatrixBBC Programmers Guide (10/5/2012) 3-29

FUNDAMENTALS OF SPL IN BACNET SECTION 3: PROGRAMS AND FILES
3.20 FUNDAMENTALS OF SPL IN BACNET
The following section illustrates standard fundamentals for writing SPL programs for the MatrixBBC. While
the information in the previous sections provide explicit information behind the underlying functionality of
each statement and its usage, this section will provide a more simplistic approach to learning how to write
SPL.

While the following information provides only a few statements, the majority of existing functions in SPL
can obviously be used with BACnet.

3.20.1 THE PROP STATEMENT
The PROP statement is equivalent to using ATTR in PUP-based devices, where PROP allows users to
create local program properties initialized to one of the twelve (12) primitive BACnet data types supported
throughout the standard. User-defined properties must be declared before any other SPL statements with
the exception of compiler control statements such as #BBC. The syntax to define a property is:

PROP propertyname, datatype=xxx.

where
. propertyname is a numeric or two-letter reference for the property.
. datatype is a keyword for one of the twelve primitive BACnet datatypes such as REAL, UNSIGNED,

NULL, BOOLEAN, etc. Note that BACnet does not support PUP datatypes (e.g. 0FEh, 254, etc).
. =XXX is an initial value assignment (this can be placed in optionally).

In addition to being available as arguments for assignment and expression statements, all declared
properties are visible to the BACnet network in the form of non-standard properties of the Program Object
associated with the program. If you wish to access these properties using a BACnet device manufactured
outside of American Auto-Matrix, please make certain that the device supports the ability to address non-
standard objects and properties.

3.20.2 PROP STATEMENT EXAMPLES
The following provides examples of how to use the PROP statement, with information on how to initialize
values for each specific datatype assignment.

3.20.2.1 FLOATING POINT DATATYPE CREATION
For floating point datatypes, use REAL. REAL is a 32-bit IEEE floating point value, typically used for
present-value in Analog Input, Analog Output, and Analog Value objects, as well as set points, and any
other type of point that is of a floating nature (contains a decimal).

PROP 10001, REAL = 65.0

3.20.2.2 UNSIGNED INTEGER DATATYPE CREATION
. For unsigned Integer datatype, use UNSIGNED.

PROP 10002, UNSIGNED = 11

3.20.2.3 SIGNED INTEGER DATATYPE CREATION
. For signed Integers, use INTEGER.

PROP 10003, SIGNED = 6
3-30 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES FUNDAMENTALS OF SPL IN BACNET
3.20.2.4 TEXT PROPERTY DATATYPE CREATION
. For text properties (character strings), use the term CHARSTRING.

PROP 10004,CHARSTRING = 0,64,"THIS IS MY TEXT PROPERTY"

In the value declaration, the value of zero (0) defines the character string set used for the text property.
This value must always be zero (0). The value of 64 limits the size of the text property value to 64
characters. All text properties must have a value defined in order for the program to compile. Text
properties are primarily to be used for read-only applications, and cannot be assigned different values from
within your SPL program.

3.20.2.5 BITSTRING PROPERTY DATATYPE CREATION
For bitstring properties, use the term BITSTRING.

PROP 10005,BITSTRING = 5,0b10101

In the value declaration, the value of five (5) defines the number of bits for the initialized value. If you
attempt to define more bits than the size setting, your program will not compile. All bitstring properties must
have a value defined in order for the program to compile. The MatrixBBC will support up to a maximum of
32 bits in a bitstring value for any property.

When a custom bitstring is viewed by a client or other front-end, all 32-bits will be returned.
3.20.2.6 TIME PROPERTY DATATYPE CREATION
For time properties, use the term TIME.

PROP 10006,TIME = 15:30:00.00
PROP 10007,TIME = 16:00

Time properties can be declared values in Hour:Minute format, or Hour:Minute:Second.Millisecond format.
Most applications used in American Auto-Matrix Native Series products use Hour:Minute format.

3.20.2.7 DATE PROPERTY DATATYPE CREATION
For date properties, use the term DATE.

PROP 10008, DATE = 0d20051225

Date property values are initialized uniquely in BACnet, when compared to PUP applications. The general
format is 0dyyyymmdd, where yyyy is the year, mm in the month, and dd is the day-of-the-month. The
example provided above represents December 25, 2005.

3.20.2.8 ENUMERATED PROPERTY DATATYPE CREATION
For enumeration properties, use the term ENUM.

PROP 10009, ENUM = 2

Enumerated property values are typically used for multiple choice assignments in standard BACnet
properties such as the Units property, or present-value of Multi-State object type.

3.20.2.9 NULL PROPERTY DATATYPE CREATION
For NULL properties, use the term NULL.

PROP 10010, NULL

A NULL Datatype is typically used in SPL to assist with relinquishing control of an Analog Output or Binary
Output that was written to at a certain priority. No initial value can be given to a NULL property because the
datatype reflects no assigned value.
MatrixBBC Programmers Guide (10/5/2012) 3-31

WORKING WITH OBJECT PROPERTIES SECTION 3: PROGRAMS AND FILES
3.21 WORKING WITH OBJECT PROPERTIES
Accessing objects and properties in BACnet using SPL can be done in a variety of methods. The following
section reviews the various methods of how to access objects and properties.

3.21.1 REFERENCING OBJECTS
SPL can access objects specifically by pre-defined object references. Appendix E2 provides a table of
supported BACnet Objects, and their predefined SPL object references.

3.21.2 REFERENCING PROPERTIES
SPL can address standard properties by using pre-defined property references. Appendix E3 provides a
table of the standard BACnet properties, and their pre-defined SPL property references. For non-standard
properties in the MatrixBBC, you may use either the two-letter reference for the property (e.g. SP, AE, etc),
or the numeric BACnet property identifier.

3.21.3 ADDRESSING OBJECT PROPERTIES
When addressing object properties in SPL, the following format must be used:
 [objectID.property]
where
. objectID references the pre-defined object reference and its Object Instance number
. property references the pre-defined property reference or numeric BACnet property identifier.

A period (.) must separate the objectID and property references.

The following examples are illustrated:
[AI1.PRESENT_VALUE]
;references Analog Input with Instance of 1
[BI2.PRESENT_VALUE]
;references Binary Input with Instance of 2
[DE800818.SYSTEM_STATUS]
;references Device object with device instance of 800818

In many applications, you will typically deal with an object’s PRESENT_VALUE property, as this is the
most commonly accessed property in BACnet devices.

However, when you are working with proprietary properties (sometimes referred to as non-standard), SPL
requires you to reference the BACnet identifier number for the proprietary property of the object you are
referencing. In AAM controllers, property identifiers for proprietary properties can be found in the
controller’s respective user manual. When you are addressing proprietary properties for a MatrixBBC
controller or an NB-GPC controller (whether local or remote over an MS/TP network connection), you may
simply use the two-letter alias that is assigned to it. However, if you are working with an ASC-family device
or a third-party BACnet controller that contains proprietary properties, you will need to use the BACnet
identifier number.

If you choose to work with the numeric BACnet property identifier or are addressing proprietary properties,
the following can be used:

[AI1.47410]
[BI2.85]
[DE800818.16520]
3-32 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES WORKING WITH OBJECT PROPERTIES
3.21.4 ADDRESSING USER-DEFINED PROPERTIES
To reference user-defined properties created at the top of your program, the following format must be
used:
 [.property]
where
. .property is the property identifier declared.

By referencing no object, SPL will look inside its own program for the property reference.
#BBC
;

PROP 10001,REAL
PROP 10002,REAL

;
L0: [.10001] =13.00

[.10002] = 16.25

3.21.5 PEER-TO-PEER ADDRESSING
SPL allows users to perform peer-to-peer transactions on the MSTP sub-network, as well as BACnet/IP or
BACnet/Ethernet network(s) that the controller resides on. To address an object property from a remove
device, the following format must be used:
 [####.objectID.property]
where
. #### is the Device Instance of the Device you wish to access.
. ObjectID is the Object Type and Instance.
. property is the property of the object.

The following example illustrates this function:
#BBC
;
L0: A = [12345.AI1.PRESENT_VALUE]

When accessing object properties from remote devices, users should place SWAIT statements of about 3
seconds between each peer-to-peer network transaction that is made. This allows for the device to receive
the token from the network. If you declare ERRORWAIT, SPL will trap an MSTP communication timeout if
encountered.

If you wish to access non-standard properties in ASC family devices remotely, you must always use the
numeric BACnet property identifier. Numeric BACnet property identifiers for each property can be found in
the back of the corresponding device you are using, or through various utilities in NB-Pro.
MatrixBBC Programmers Guide (10/5/2012) 3-33

WORKING WITH OBJECT PROPERTIES SECTION 3: PROGRAMS AND FILES
3.21.6 WRITING VALUES TO OBJECT PROPERTIES
Writing values to object properties is dependent on the datatype of the property you are working with. By
general nature, BACnet SPL can write to numeric based data types by simply placing an equal sign after
the object property and declaring your value. Datatypes that are acceptable to the right-side of the equal
sign are as follows:
. REAL
. UNSIGNED
. INTEGER
. TIME
. DATE
. BOOLEAN
. ENUM
. DOUBLE

The following example provides this action:
[AI1.PRESENT_VALUE]=75.2
[AV2314.PRESENT_VALUE]=64.0

Similar to proprietary PUP applications, you can utilize traditional variable assignment routines. Keep in
mind that some datatypes need to be equated to a user-defined property configured for the same datatype
if one wishes to modify its value through SPL. The primary datatype that must follow this format is
BITSTRING.

The following example illustrates how to write to BITSTRING datatypes:
#BBC
;

PROP 10001,BITSTRING=8,0b10101010
;
L0: [GPCSCHED1.AD] = [.10001]
3-34 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES WORKING WITH OBJECT PROPERTIES
3.21.6.1 WRITING WITH COMMAND PRIORITIZATION
In BACnet, it is possible for many different devices to try to modify the same device’s object property
values. If multiple devices tried to write to the same object property, errors could occur and values could be
set incorrectly. To avoid this, BACnet uses priority arrays to determine the order in which property changes
will be performed.

A priority array assigns the unique levels of priority to the different types of devices that could write to a
device. There are 16 prioritization levels with 1 being highest, and 16 being lowest. A complete list of
BACnet Priority Array Levels and their uses is given below:

Valid Objects that need to be commanded with Priority Array are as follows:
. Analog Output
. Analog Value (if commandable)
. Binary Output
. Binary Value (if commandable)

To write to one of the above objects using Priority Array, you must place an at sign (@) followed by the
level of priority you wish to write with inside the object property reference. If the (@) is not specified in the
syntax, priority level 16 is assumed. The following example illustrates:

#BBC
;
L0: [AO1.PRESENT_VALUE@2]=100.0

[BO1.PRESENT_VALUE@2]= 1

To relinquish control, you must equate the object property at the same priority to a user-defined property
with a NULL datatype. The following example illustrates:

#BBC
PROP 10013,NULL

L0: [AO1.PRESENT_VALUE@2]=[.10013]
[BO1.PRESENT_VALUE@2]=[.10013]

Table 3-4: Priority Array Levels

Priority
Level

Application
Priority
Level

Application

1 Manual-Life Safety 9 Available

2 Automatic-Life Safety 10 Available

3 Available 11 Available

4 Available 12 Available

5
Critical Equipment

Control
13 Available

6 Minimum On/Off 14 Available

7 Available 15 Available

8 Manual Operator 16 Available
MatrixBBC Programmers Guide (10/5/2012) 3-35

WORKING WITH OBJECT PROPERTIES SECTION 3: PROGRAMS AND FILES
3.21.7 DATA TYPE SENSITIVITY WITH BACNET SPL
In comparison to PUP applications, datatypes in BACnet are mostly 32-bit, which results in sensitivity
when writing data through SPL. In SPL, the following items are the most common error when writing
BACnet SPL.
. When writing to floating point values, you must include a decimal place. If you do not include a decimal

place, your SPL program could abort.
. When performing math functions in SPL, you must use the same datatypes. For example, if you try to

add an unsigned value of 15 to a time of 15:00 to get 15:15, this will not work. You must add two times
together in order to come to a realistic result. Operating outside of this rule will result in aborted SPL
programs

. Follow the rules listed with each datatype listed within this manual. For example, you can only write to
bitstring properties by equating a property to a user-defined property.

3.21.8 EQU FUNCTION LIMITATIONS IN BACNET SPL
When using the EQU function with BACnet-based SPL programs, you may use the function to reference
commonly accessed objects within your program. Unlike PUP-based SPL, you cannot use EQU functions
to write to commandable objects such as Analog Outputs, Analog Values, Binary Outputs and Binary
Values in the MatrixBBC. While the EQU statement can accommodate addressing commandable object
types, this functionality is limited to being used for read commands, rather than write commands.
3-36 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES OBJECT SYNTAX REFERENCE
3.22 OBJECT SYNTAX REFERENCE
The following table provides a syntax reference for how objects are addressed in MatrixBBC products.
Object aliases are available not only for interacting with GPC logic blocks that can be created in the
MatrixBBC, but also objects that reside on remote GPC v2.0 products, as well as remote GPC v1.x
products and NB-ASC controllers. Careful consideration should be taken into account relative to how are
addressing objects.

Table 3-5 Object Syntax Reference

Object Type SPL Syntax Reference

Analog Input AI

Analog Output AO

Analog Value AV

Binary Input BI

Binary Output BO

Binary Value BV

Multi-State-Input MSI

Multi-State-Output MSO

Multi-State-Value MSV

Calendar CAL

Device DE

Event Enrollment EE

File FI

Group GR

Loop LP

Notification Class NC

Program PG

Schedule SC

Average AVG

Trend Log TR

Life Safety Point LSP

Life Safety Zone LSZ
MatrixBBC Programmers Guide (10/5/2012) 3-37

OBJECT SYNTAX REFERENCE SECTION 3: PROGRAMS AND FILES
UI Summary (GPC v2.0) GPCBTLUISUMMARY

DO Summary (GPC v2.0) GPCBTLDOSUMMARY

AO Summary (GPC v2.0) GPCBTLAOSUMMARY

DI Summary (GPC v2.0) GPCBTLDISUMMARY

SSB Summary (GPC v2.0) GPCBTLSSBSUMMARY

Schedule Summary (GPC v2.0)
GPCBTLSCHEDULESUM
MARY

Input Select (GPC v2.0) GPCBTLINPUTSELECT

Mix Max Average (GPC v2.0) GPCBTLMINMAXAVG

Math (GPC v2.0) GPCBTLMATH

Logic (GPC v2.0) GPCBTLLOGIC

Remap (GPC v2.0) GPCBTLREMAP

Piecewise Curve (GPC v2.0) GPCBTLPCURVE

Scaling (GPC v2.0) GPCBTLSCALING

Netmap (GPC v2.0) GPCBTLNETMAP

Enthalpy (GPC v2.0) GPCBTLENTHALPY

Staging (GPC v2.0) GPCBTLSTAGING

Comm Status (GPC v2.0) GPCBTLCOMMSTATUS

Season (GPC v2.0) GPCBTLSEASON

Statbus (GPC v2.0) GPCBTLSTATBUS

PID Control (GPC v2.0) GPCBTLPID

Pulse Pair PID (GPC v2.0) GPCBTLPULSEPAIR

Thermostatic Control (GPC v2.0) GPCBTLTHERMCTRL

Timers (GPC v2.0) GPCBTLTIMERS

Broadcast (GPC v2.0) GPCBTLBROADCAST

STATbus (GPC v1.x) GPCSTATBUS

UI Summary (GPC v1.x) GPCUISUMMARY

Table 3-5 Object Syntax Reference

Object Type SPL Syntax Reference
3-38 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES OBJECT SYNTAX REFERENCE
DI Summary (GPC v1.x) GPCDISUMMARY

AO Summary (GPC v1.x) GPCAOSUMMARY

DO Summary (GPC v1.x) GPCDOSUMMARY

Occupancy (GPC v1.x) GPCOCCUPANCY

Motor Control (GPC v1.x) GPCMOTORCONTROL

Thermostatic Control (GPC v1.x) GPCTHERMCTRL

PID Control (GPC v1.x) GPCPID

Scaling (GPC v1.x) GPCSCALING

Piecewise Curve (GPC v1.x) GPCPCURVE

Logic (GPC v1.x) GPCLOGIC

Math (GPC v1.x) GPCMATH

Min Max Average (GPC v1.x) GPCMINMAXAVG

Input Select (GPC v1.x) GPCINPUTSELECT

Broadcast (GPC v1.x) GPCBROADCAST

ASC Economizer ASCECONOMIZER

ASC PID Control Loops ASCPID

ASC Occupancy Control ASCOCCUPANCY

ASC Proof of Flow ASCPROOFOFFLOW

ASC Broadcast ASCPULSE

ASC Flow Setpoints ASCBROADCAST

ASC Reheat Control ASCREHEAT

ASC Valve Control ASCVALVECTRL

ASC Damper Control ASCDAMPER

Table 3-5 Object Syntax Reference

Object Type SPL Syntax Reference
MatrixBBC Programmers Guide (10/5/2012) 3-39

ADVANCED BACNET SPL FUNCTIONS SECTION 3: PROGRAMS AND FILES
3.23 ADVANCED BACNET SPL FUNCTIONS

3.23.1 THE OID FUNCTION

OID(objecttype,instexpr)

where:
objecttype is a numeric object identifier number or SPL object reference
instexpr is an expression for instance

The OID function is used to compute object identifier numbers from within an SPL program. In many
instances the desired object type will be known, but the object instance will be determined during the
program’s execution. This would occur, for example, if you knew you wanted to read from an analog input,
but you wanted the particular input chosen when the program is run.

The OID function will return the object identifier number for the object specified by the object type and
instance number entered into the objecttype and instexpr arguments. The objecttype argument can either
be the numeric object identifier number for that type of object or the SPL keyword used to refer to that
type. The instexpr argument can be any expression which results in a positive integer value. A complete
list of both the standard BACnet object types as well as the AAM proprietary object types, their object
identifier numbers for each, and the SPL Object References for each are given in Appendix E.

As an example, to compute the object identifier number for the third instance of the analog output object
you could use the numeric value for the object identifier number and write

OID(1,3)

or you can use the SPL keyword AO to specify the analog output

OID(AO,3)

Similarly, you could use a program register to decide which object to use. If you wanted to look up the
object identifier number for the analog output whose instance number was stored in the B register for the
program you could write

OID(AO,B)

The OID function can be combined with the BACNET statement to programmatically read properties from,
or write properties to, any controller on the MSTP sub-network.

3.23.2 THE BACNET STATEMENT
The BACNET statement is used to reference a property on the BACnet network. Your programs can read
values from, or write values to, the referenced property using the BACNET statement. The syntax for the
BACNET statement is as follows:

BACNET(devexpr,objexpr,propexpr,instexpr)

where
devexpr is an expression whose value specifies the device object instance of the device

containing the property to be read or written.
3-40 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES ADVANCED BACNET SPL FUNCTIONS
objexpr is an expression specifying the object identifier number of the object whose property is to
be read.

propexpr is an expression for the identifier number for the chosen property.
instexpr specifies an array index for use in cases when array properties are being read.

When working with the BACNET statement the special value -1 (0xFFFFFFFF) can be used for devexpr
and instexpr. When used in devexpr, the value -1 means "this device" and is used to refer to properties
present in the device in which the SPL program is running. When used in instexpr, a value of -1 indicates
that no array index is provided. A value of -1 should be entered for instexpr whenever you are referencing
a single value. The instexpr term is only used for bit string, character string, and octet string properties.

3.23.2.1 READING VALUES WITH THE BACNET STATEMENT
The BACNET statement can be used to read values from any device connected to the MSTP sub-network.
To read a value, you must specify the device, object identifier number, property identifier number, and
index of the property to be read. Each of these values may be functions or expressions, allowing you to
determine the property to be read at the time of executions.

For example, if you wanted to read the value of the property who’s identifier number was 85 from an object
located on the same controller who’s identifier number was 127.

BACNET(-1,127,85,-1)

Here the devexpr is -1 because the object is on the same device, objexpr is the object identifier number
127, 85 is the identifier number of the property we wish to read, and the value of -1 is included because the
property is not an array and, therefore, has no index value.

The combination of the OID and BACNET statements is particularly useful. The OID function can be used
as the objexpr argument to the BACNET statement, allowing you to specify any property without having to
know identifier numbers ahead of time. If you wished to read the present_value of Analog Output 1 then
you would write:

D=OID(AO,1)
BACNET(-1,D,85,-1)

Here we have used the OID function as an argument in the BACNET statement. You can also use
expressions in the OID function. If, in the example above, instead of Analog Output 1, you were interested
in reading the value of the Analog Output who’s instance number was stored in A, you would write:

D=OID(AO,A)
BACNET(-1,D,85,-1)

Expressions can also be used in the devexpr and instexpr arguments. If you had, for example, 10 NB-VAV
controllers with device numbers 10 through 19, you could average the measured flow (Flow
Control:present_value) using the following code.

A=0
B=10
C=OID(AI,6)

L1: A=A+BACNET(9+B,C,85,-1)
LOOP B,L1
A=A/10
MatrixBBC Programmers Guide (10/5/2012) 3-41

ADVANCED BACNET SPL FUNCTIONS SECTION 3: PROGRAMS AND FILES
In this program, the value of B is used to increment the device from which the flow is being read and A is
the average flow.
(10/5/2012)
Similarly, you could use expressions in arguments to the BACNET statement to choose the property being
read. If you had, for example, twelve inputs devices connected to your MatrixBBC measuring space
temperatures, you could read the current values and calculate an average space temperature using a
program similar to the one above or you could simply use the values in the Universal Input Summary
Objects. In this case, the current values would be in the (VD) Current Measured Input 13 through (VO)
Current Measured Input 24 properties. The code to do this would look like this:

A=0
B=12

L1: A=A+BACNET(-1,UISUMMARY0,VC+B,-1)
LOOP B,L1
A=A/12

Here we are using B to increment the property identifier number. The value VC+B is used because we are
interested in the values of properties VD (identifier number 54852) through VO (identifier number 54863).
VC has a value of 54851 and we know that B will vary from 12 to 1 as the program executes the LOOP
statement. The loop will therefore count from 54863, the identifier number for VO, down to 54852, the
identifier number for VD.

3.23.2.2 WRITING VALUES WITH THE BACNET STATEMENT
The syntax used for writing values using the BACNET statement is very similar to that used for reading
with one additional parameter. When writing values, you must include a priority array level for the write.
This value is appended after the instexpr argument in the BACNET statement. The complete syntax would
look like

BACNET(devexpr,objexpr,propexpr,instexpr,priority)

where
devexpr is an expression whose value specifies the device object instance of the device

containing the property to be written.
objexpr is an expression specifying the object identifier number of the object whose property is to

be written.
propexpr is an expression for the identifier number for the chosen property.
instexpr specifies an array index for use in cases when array properties are being written.
priority is an expression for the priority array level for the write command

When writing values using the BACNET statement, you may use expressions for any of the arguments in
the same way that you could when reading values. For example, if you wanted to turn on all of the digital
outputs on, you would write the following:

B=12
L1: C=OID(BO,B)

BACNET(-1,C,85,-1,7)=1
LOOP B,L1

. In this example, the present_value property for each of the twelve Digital Output objects is set to one.
This value is written with a priority of 7.
3-42 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES TROUBLESHOOTING YOUR SPL PROGRAM
3.24 TROUBLESHOOTING YOUR SPL PROGRAM
One of the most common call topics that AAM Technical Services receives is regarding SPL programming
issues realtive to halted programs. In many cases, halted programs can be troubleshot using some of the
features discussed within this section of the manual. This section of the program is provided to re-iterate
information in a helpful, summarized fashion.

3.24.1 USING SECTION STATEMENTS
The SECTION statement is a debugging statement that can be placed strategically throughout a program
to track its execution process from the program-location property. Figure 3-1 illustrates an example of how
SECTION statements can be used throughout a program. Observe that under SECTION 2, the program
incorrectly addresses an Analog Input (AI), where the author may have intended to reference an Analog
Output (AO).

Figure 3-1 - Example of an SPL Program with Error within Section 2

When the program is loaded and commanded to run, the program will Halt due to this. Figure 3-2
illustrates that this program has halted with the description-of-halt property indicating an error of
Property:Write-Access-Denied. While this description may provide a general indication of the program
attempting to write to something that is not necessarily writable, it does not provide an exact location or
reference. However, the program-location property provides a string message that includes the SECTION
number that provides a more general area as to where the error is located at within the program.

Figure 3-2 - Example of NB-Pro Monitoring Halted Program

SECTION statements can be used in defensive manner to help troubleshoot programs after a system has
been fully commissioned, and is suggested for crafted line-by-line programs that you may write
occasionally.
MatrixBBC Programmers Guide (10/5/2012) 3-43

TROUBLESHOOTING YOUR SPL PROGRAM SECTION 3: PROGRAMS AND FILES
3.24.2 USING SINGLE-STEP MODE
Single Step Mode is a utility built into each program object that can be used to initially test and/or debug
your SPL program. Single Step Mode executes one line of defined program code in a sequential manner.
As each line is executed, the program-change property will be set to Halt.

To enable Single-Step Mode on a Program Object, locate property ($1) Enable Single-Step Mode?. Set
this value to Yes <Single Step Mode> (1).

Figure 3-3 - Enabling Single-Step Mode on a Program Object

With Single-Step Mode enabled, you may command a program to Run or Restart in this mode through the
program-change property.

Figure 3-4 - Commanding the program-change Property

As each line is ran, the program will be immediately halted. If the program line has been executed
successfully, the reason-for-halt property will report Normal (0), and description-of-halt will reflect you
are in Single Stepping mode as shown in Figure 3-5.

Figure 3-5 - Single Step Mode - Line Executed Successfully
3-44 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES TROUBLESHOOTING YOUR SPL PROGRAM
To execute the next line, simply set the program-change property to a value of Run (2). This will command
the program to run the next line of logic while remaining in Single-Step Mode.

Figure 3-6 - Commanding the Program to Run

After commanding the program, you may eventually find a situation where your program may halt. When it
does, information will be provided in a manner as if you were using the SECTION statement.

Figure 3-7 - Single Step Mode - Program Halted with Error
MatrixBBC Programmers Guide (10/5/2012) 3-45

TROUBLESHOOTING YOUR SPL PROGRAM SECTION 3: PROGRAMS AND FILES
3.24.3 REFERENCE THE .LST FILE
The .LST file is a file that is generated by the SPL Compiler when a program successfully compiles for use
with a device. The existence of this file is one in which is gives technicians and programmers a
comprehensive way to locate which specific program line or command that results in a halted program.

The .LST file can be opened with any standard text editor. Upon first opening the file, the information may
appear to be cryptic to users. However, this section of the manual is provided to assist you with
understanding the file format and how you can leverage it for advanced troubleshooting.
3-46 MatrixBBC Programmers Guide (10/5/2012)

SECTION 3: PROGRAMS AND FILES TROUBLESHOOTING YOUR SPL PROGRAM
3.24.3.1 REFERENCING .LST COLUMN DATA
Within the .LST File, there are four columns of information that provide detailed information regarding the
program that can essentially assist troubleshooting your compiled SPL program. These four columns are
described in further detail in the table below.

Figure 3-8 - .LST FIle Displaying the Line, Off, Pcodes, and Statement Columns

Table 3-6 The Four Columns for Troubleshooting SPL via .LST File Method

Column Notes

Line
The Line section contains the SPL Source Code Document Line
number. This corresponds to the line number of the SPL source that is
referenced.

Off
The Off section specifies memory offset which are referenced internally
by the product’s Program Executor (PEX).

Pcode

The Pcode section contains a detailed breakdown of the single
pseudocode (pcode) memory offset for a specific line of SPL
programming. This pcode is referenced by a program as it is executed
and reported through the program-location property. This column

Statement
The Statement section provides the raw typed SPL source code
developed by the technician.
MatrixBBC Programmers Guide (10/5/2012) 3-47

TROUBLESHOOTING YOUR SPL PROGRAM SECTION 3: PROGRAMS AND FILES
In the event that a deployed program halts or aborts, the location of which the program halted is advertised
in the program-location property. This string will define a hexadecimal offset. This offset directly
corresponds with Pcode column information. In the sample shown below, this program halted at offset
0x0028. We will examine the .LST file and locate this specific line and command.

Figure 3-9 - Example of Halted SPL Program with Stated Location

3.24.3.2 PARSING THE .LST FILE
The following shows an example of how the .LST file is parsed for information. Notice that under the
Pcodes column, the hexadecimal location is provided. As shown below in the red box, the line of code
begins with hex offset 0028, which indicates that the program halt is being caused by this statement (which
is an attempt to write to an Analog Input that is likely out of service).

Pcodes are counted in hex from left to right start after the offset location, which could be 0020, 0025, or
2280. The first offset is the listed memory Pcode, then is incremented up from there for each statement on
a line.

Figure 3-10 - Locating the Pcode in the .LST File
3-48 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING

This section provides general information regarding the use of BACnet Schedule and BACnet Calendar
objects, and how they may be used to setup general schedule occupancy, as well as advanced,
programmatic scheduling of control values within the MatrixBBC.
IN THIS SECTION
Scheduling Overview ... 4-3
 About Schedule Objects.. 4-3
 About Calendar Objects .. 4-3
 Creating Schedules in the MatrixBBC... 4-3
 Creating Calendars in the MatrixBBC ... 4-4
Schedule Object Configuration .. 4-5
 Determine Your Schedule Application... 4-5
 Configure the Schedule Datatype ... 4-5
 Configure the Effective Period .. 4-7
 Configure the List of Object-Property References .. 4-8
 Configure the Priority for Writing ... 4-9
 Configure the Weekly-Schedule.. 4-10
 Configuring the Exception Schedule..4-11
Calendar Object Configuration... 4-13
 Auto-Deleting Stale Calendar Entries.. 4-13
MatrixBBC Programmers Guide (10/5/2012) 4-1

SECTION 4: SCHEDULING
4-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING SCHEDULING OVERVIEW
4.1 SCHEDULING OVERVIEW
The MatrixBBC supports BACnet Schedule and Calendar objects to permit programmatic scheduling of
values within the controller, as well as manipulation of values in other devices on the BACnet network.
Using these objects together, it is also possible to perform complex overrides of normal daily schedules
based on events defined in a Calendar object, or other system actions based on object statuses. The
MatrixBBC supports a maximum of 32 Schedule objects.

4.1.1 ABOUT SCHEDULE OBJECTS
Schedule objects are setup to define a periodic schedule that may recur during a range of dates, with
optional exceptions at arbitrary times on arbitrary dates. The Schedule object also serves as a binding
between these scheduled times and the writing of specified values to specific properties of specific objects
at those times.

Schedules include two different scheduling methods: weekly scheduling and exception scheduling. Both
types of days can specify scheduling events for either the full day or portions of a day, and a priority
mechanism defines which scheduled event is in control at any given time.

The current state of the Schedule object is represented by its present-value property, which is normally
calculated using configured time/value pairs entered into the weekly-schedule and/or exception-schedule
properties. Schedules also include a default value (known as schedule-default) for use with no schedules
are in effect.

4.1.2 ABOUT CALENDAR OBJECTS
Calendar objects are used to define days, dates, date ranges, and other periods that may indicate a
special event. Calendar objects are commonly used in conjunction with a Schedule object’s exception-
schedule property to configure a higher priority schedule mode that deviates from the normal schedule
calculations controlled by the weekly-schedule property of a Schedule object. The MatrixBBC supports a
maximum of 32 Calendar objects.

4.1.3 CREATING SCHEDULES IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Schedules objects are created by the technician when necessary, and are done in a dynamic manner. The
MatrixBBC supports a maximum of 32 Schedule objects.

To create a Schedule object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MD) Max Schedule Objects property. By default, this value is set to 0, indicating no Sched-

ule objects exist.
3. Write the number of total Schedule objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Schedules, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Schedule objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.
MatrixBBC Programmers Guide (10/5/2012) 4-3

SCHEDULING OVERVIEW SECTION 4: SCHEDULING
4.1.4 CREATING CALENDARS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Calendar objects are created by the technician when necessary, and are done in a dynamic manner. The
MatrixBBC supports a maximum of 32 Calendar objects.

To create a Calendar object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MC) Max Calendar Objects property. By default, this value is set to 0, indicating no Calen-

dars objects exist.
3. Write the number of total Calendar objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Calendars, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Calendar objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.
4-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING SCHEDULE OBJECT CONFIGURATION
4.2 SCHEDULE OBJECT CONFIGURATION
The following sections provide details on how to configure a Schedule to change values in the MatrixBBC.

4.2.1 DETERMINE YOUR SCHEDULE APPLICATION
BACnet Schedule objects are intended to provide programmability and flexibility for your area control
routines. Schedules created within the MatrixBBC can be used to adjust software parameters within the
MatrixBBC (e.g. control loops, data storage objects, etc.). In addition to internal control, external control
over remote BACnet objects can be performed with Schedules.

Within the MatrixBBC, Control Loops (Analog PID Control, Pulsed Pair PID Control, and Thermostatic
Control) can be controlled using AAM’s classic four-mode scheduling system. Each schedule mode can
have a specific setpoint assigned that allows the control loop to reference the schedule and operate on a
specific setpoint parameter when the Schedule’s present-value is equal to one of the four scheduled
modes. Application Specific Controllers manufactured by American Auto-Matrix also support four-mode
scheduling (Occupied, Unoccupied, Warmup, Night Setback). These schedule modes typically refer back
to specific actions that may occur in the application when the schedule enters into one of the four specified
states.

The mode assignment is as follows:
0 = Unoccupied
1 = Warm Up
2 = Occupied
3 = Night Setback

To provide support for this scheduling mechanism, a Schedule object can be configured for an Unsigned
data type and be configured to support four-mode scheduling.

4.2.2 CONFIGURE THE SCHEDULE DATATYPE
Before you can instruct a Schedule object exactly what it will control, you must first determine the datatype
you will schedule with. Determining the datatype will depend on exactly what you wish to control based on
a schedule. The Schedule object can be configured to schedule with one specific datatype. If you need to
schedule with multiple data types, you must use multiple schedules.

Schedule objects can be configured to schedule with the following data types:
. Boolean
. Unsigned
. Integer
. Real
. Enumerated
. Date
. Time
. Object ID

Data types and examples of commonly scheduled properties are provided in the following table below.
MatrixBBC Programmers Guide (10/5/2012) 4-5

SCHEDULE OBJECT CONFIGURATION SECTION 4: SCHEDULING
To configure the datatype of a Schedule object:
1. Select schedule-default and set the property type to the data type you wish to configure the schedule

for and click Update Value.

-or-

2. Select (DT) Schedule’s Default Data Type, and select a datatype from the list and click Update
Value.

Table 4-1: Schedule Datatype Example Usage

Datatype Example Use

Boolean . Any object’s out-of-service property
. The log-enable property of a Trend Log object
. Any standard object’s (EA) Enable Alarming property.

Unsigned . Adjust the time-delay of an alarm for an object configured for alarm/
event support.

. Change the function of a Data Manipulation object (e.g. Function of a
Math object).

. Used to utilize the four-mode schedule application for control loops
within the MatrixBBC.

Integer Modify a signed integer property in an SPL program or in an external device
through use of a Netmap object.

Real . Command the present-value of an Analog Output or Analog Value
. Adjust a set point of a PID Control Loop, Thermostatic Control Loop,etc.

Enumerated . Command the present-value of a Binary Output, or a Binary Value
object

. Change the Notification Class assignment for a specific object enabled
for alarming.

Date Modify a date property in an external device through the use of a Netmap
object.

Time Modify a time property in an external device through the use of a Netmap
object.

Object ID Modify the object-ID portion of an object-property reference of a logic object
within the MatrixBBC (such as a Math object, a PID Control Loop,
Thermostatic Control loop, etc.)
4-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING SCHEDULE OBJECT CONFIGURATION
Figure 4-1 - Schedule Default Datatype Configuration

Figure 4-2 - Schedule Datatype Configuration Using the Schedule-Default Property

4.2.3 CONFIGURE THE EFFECTIVE PERIOD
By default, a Schedule is configured to be effective (actively calculating schedule data) at all times. In
some situations, there may be cases where you may want a programmed Schedule to only be affective
during specific date ranges, day ranges, or other special periods where a date may need to be wildcard for
customization. This is achieved through configuring the effective-period property.
MatrixBBC Programmers Guide (10/5/2012) 4-7

SCHEDULE OBJECT CONFIGURATION SECTION 4: SCHEDULING
The effective-period defines a range which can be configure for:
. Month/Date/Year - a specific month, date, and year (e.g. January 25th, 2010 to January 27th, 2010).
. Month/Date - a specific month and date on any year (e.g. December 22th to December 26th).
. Day of Week - a specific day of the week on any month and any year (e.g. Monday through Thursday).
. Month - a range of months for any year (e.g. January through March)
. Month/Day of Week - a specific day of week on a specific month of any year (e.g. Monday in Novem-

ber through Wednesday in November).
. Any - any range not defined above. This is a custom, wildcard selection.

Figure 4-3 - Configuring the Effective-Period

When the MatrixBBC’s local-date (see Device object) is within the confines of the defined effective-
period, the Schedule object will operate and control. No calculations will occur when the local-date is
outside of the defined range.

4.2.4 CONFIGURE THE LIST OF OBJECT-PROPERTY REFERENCES
The list-of-object-property-references defines what object-properties the Schedule object will write
values to when a time,value pair entry is processed. For example, if you wish for a group of Binary Outputs
to be active at a specific time, you must reference each Binary Output object’s present-value you wish to
control within this property.

NOTE
When the effective-period is set for it’s default
value of any to any (---/--/---- to --/--/----), the
Schedule’s configuration will remain in effect
indefinitely.
4-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING SCHEDULE OBJECT CONFIGURATION
Figure 4-4 Configuring the list-of-object-property-references

Schedules can accept up to 50 object-property-references. A reference can be any object-property that
exists within the controller. For objects on remote devices, you must enter the Device Instance of the
BACnet device you wish to write to. Should you need to control additional object-property-references using
the same Schedule, it is recommended that you create another Schedule object, configure it’s list-of-
object-property-references, and use a Remap object to write the present-value of the first Schedule to the
schedule-default property of the new schedule.

4.2.5 CONFIGURE THE PRIORITY FOR WRITING
The priority-for-writing property defines which Command Prioritization level the Schedule object will write
with in the event that its list-of-object-property-references is programmed to control the present-value of

NOTE
If you experience issues with the MatrixBBC writing
to objects on other devices, check to ensure you
have entered the correct Device Instance into this
property. You can also check the device-address-
binding property of the Device Object of the
MatrixBBC to ensure that the device was located. If
the device was not located, you can manually
configure an entry into the binding list.
MatrixBBC Programmers Guide (10/5/2012) 4-9

SCHEDULE OBJECT CONFIGURATION SECTION 4: SCHEDULING
Analog Output, Analog Value, Binary Output or Binary Value objects. This value is assignable to a value
between 1 and 16.

Figure 4-5 - Configuring Priority-For-Writing

4.2.6 CONFIGURE THE WEEKLY-SCHEDULE
The weekly-schedule property contains time/value pairs which tell the Schedule what value to write to the
object listed in list-of-object-property-references at the time defined in the weekly-schedule. The
weekly-schedule contains a list for each day of the week (Monday through Sunday), where each day of the
week supports up to 9 time/value pair entries.

To configure a weekly-schedule, perform the following steps:
1. Select the weekly-schedule property. From the editor, select the day of the week you wish to define.
2. Using the editors, enter a time and associated value. Click Add to add the definition.
3. If you wish for the objects to follow the value listed in schedule-default, enter a time and select the

Resume Default button or type NULL. This will place a NULL next to the time in the list.
4. Once you have successfully defined the list for a day, click Update Value.
5. Repeat steps 2 and 4 for all other days of the week.

NOTE
When writing to objects in third-party devices, refer
to the vendor’s documentation on priority levels
that can be used for writing. Some third-party
devices may limit or restrict the use of specific
priority levels for use or application.
4-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING SCHEDULE OBJECT CONFIGURATION
Figure 4-6 Configuring the weekly-schedule

4.2.7 CONFIGURING THE EXCEPTION SCHEDULE
The exception-schedule is used to configure a higher priority schedule, thus overriding the functionality
defined in the weekly-schedule for special situations, such as one-time events (e.g. holidays, snow days,
last minute meetings, etc.). These exceptions are listed Scheduled events entered into the exception-
schedule are intended for singular events, or even recurring situations where the schedule must be
overridden. Each Schedule object can contain up to five (5) listed exceptions.

Exceptions can be based on one of four reference methods:
. Date - a single defined date with our without wildcard.
. Date Range - a range of dates with or without wildcard.
. Week N Day - Entry based on week number, day and month - with or without wildcard
. Calendar Reference - references a configured Calendar object within the MatrixBBC.

Figure 4-7 Options for the exception-schedule reference

For each reference, a priority is also available with prioritizes the importance of the exception list entries.
Once a reference method has been selected, simply enter your time and associated value.
MatrixBBC Programmers Guide (10/5/2012) 4-11

SCHEDULE OBJECT CONFIGURATION SECTION 4: SCHEDULING
Figure 4-8 Entering Time,Value Pairs for Exception Schedules

CAUTION
In order to perform exception-scheduling with a
Calendar reference, at least one (1) Calendar
object must be created. If you attempt to configure
an exception-schedule to reference a Calendar
when one does not exist, writes will not be
accepted.
4-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 4: SCHEDULING CALENDAR OBJECT CONFIGURATION
4.3 CALENDAR OBJECT CONFIGURATION
Calendar objects are simple and straight-forward to setup and configure. Each Calendar object contains a
datelist property, which defines a list of dates, date ranges, or week-n-day entries. A maximum of 25
entries (consisting of any entry type) can be programmed into the datelist of each Calendar object.

When the local-date of the MatrixBBC’s Device object coincides with an entry programmed into the
datelist, the Calendar’s present-value will indicate that the Calendar is active. This permits users to
program special events (such as recurring holidays, functions, one-time events, etc..)

Figure 4-9 Calendar Configuration

Calendar objects are mainly used in conjunction with exception-schedule configurations of a Schedule
object. However, you are free to use any additional logic available at your disposal within the MatrixBBC to
perform other control sequences based on the present-value of the Calendar object.

4.3.1 AUTO-DELETING STALE CALENDAR ENTRIES
The (OS) Auto Delete Stale Entries property can be used to perform an automated “clean-up” of special
events from the datelist that are Date based. For example, an entry could be made into the datelist of a
Calendar object signify a special one-time event. When the event expires, traditional BACnet devices may
keep the entry of this event until a user manually removes the event from the datelist. When (OS) Auto
Delete Stale Entries is set to True (1), the MatrixBBC will examine the datelist upon every day at midnight,
or upon receiving a time-synchronization from a higher level server such as AspectFT. If the local-date
exceeds a Date-based entry made that does not contain wild-card placeholders, the entry will be removed.
MatrixBBC Programmers Guide (10/5/2012) 4-13

CALENDAR OBJECT CONFIGURATION SECTION 4: SCHEDULING
4-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 5: ALARM ROUTING

This section provides general information regarding the setup and configuration of alarm routing using
BACnet Notification Class objects. The MatrixBBC will support a maximum of 10 Notification Class
objects.
IN THIS SECTION
Notification Class Overview ... 5-3
 Creating Notification Classes in the MatrixBBC.. 5-3
 Configuring the Priority ... 5-3
 Configuring Ack-Required... 5-4
 Configuring the Recipient List ... 5-4
MatrixBBC Programmers Guide (10/5/2012) 5-1

SECTION 5: ALARM ROUTING
5-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 5: ALARM ROUTING NOTIFICATION CLASS OVERVIEW
5.1 NOTIFICATION CLASS OVERVIEW
Notification Classes are used in BACnet to organize and define the distribution of alarm and event
notifications from objects that support notifications. Within the MatrixBBC, several objects support
notifications, allowing end-users to know when certain situations occur within the system (e.g. a space
temperature may be too high for normal comfort). Notification Classes are useful for event-initiating objects
that have identical needs of how their notifications should be handled, what the destinations are for {where
notifications should be sent, and how they should be acknowledged}.

In many cases, Notification Classes are configured to allow the MatrixBBC to send alarm and event
notifications to an operator workstation or centralized front-end/web-server.

The MatrixBBC can support up to 10 Notification Class objects using dynamic creation as needed. Each of
these Notification Class objects support up to 5 configurable destinations - each containing a valid day/
time schedule, unique process identification number, and other features.

5.1.1 CREATING NOTIFICATION CLASSES IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Notification Class objects are created by the technician when necessary, and are done in a dynamic
manner. The MatrixBBC supports up to a maximum of 10 Notification Class objects.

To create a Notification Class object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MO) Max Notification Class Objects property.
3. Write the number of total Notification Class objects you wish to have in the MatrixBBC. For example, if

you wish to have 10 Notification Class objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Notification Class objects, you must re-discover the object list
of the MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the
Devices list in NB-Pro.

5.1.2 CONFIGURING THE PRIORITY
The priority property defines a numeric level used to define the criticality of an event or alarm notification.
The property provides criticality levels for the three types of transitions supported by BACnet, including:
. To-OffNormal - occurs when the object exits outside the configured limit thresholds.
. To-Normal - occurs when the object enters into a normal state within configured limit thresholds.
. To-Fault - occurs when the object’s health enters into an unhealthy state (e.g. temperature sensor

shorts and provides unreliable values).

Each priority can be assigned a value ranging from 1 (most critical) to 255 (least critical).

Figure 5-1 - Example Configuration of priority
MatrixBBC Programmers Guide (10/5/2012) 5-3

NOTIFICATION CLASS OVERVIEW SECTION 5: ALARM ROUTING
5.1.3 CONFIGURING ACK-REQUIRED
The ack-required property defines whether or not the MatrixBBC requires acknowledgments back from an
operator workstation or BACnet device once a notification has been received from the MatrixBBC. This
property provides enable/disable options for each limit threshold of BACnet (To-OffNormal, To-Normal, To-
Fault). Enabling a limit threshold requires acknowledgment.

Figure 5-2 - Example Configuration of ack-required

5.1.4 CONFIGURING THE RECIPIENT LIST
The recipient-list property specifies addressed destinations where notifications are sent. Each Notification
Class object can have up to five (5) recipients defined. Each recipient contains the following:
. Simple Schedule - used to define a valid period of time and day as to when notifications can be sent.
. Process ID - a unique ID allowing operator workstations or other devices to process alarms in a spe-

cific manner. Valid ranges are 0-65535.
. Address - defines where alarms are sent to. The address can be defined in the form of a device

instance, or actual address with network number (0 = local, 1-65534 = specific network, 65535 =
broadcast) and port.

. Notifications - defines whether or not to issue confirmed notifications, and the transitions that should
be sent by the transitions.
5-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 5: ALARM ROUTING NOTIFICATION CLASS OVERVIEW
Figure 5-3 - Example Configuration of recipient-list

NOTE
If you have programmed a destination previously
into the Device object’s device-address-binding
table, you can simply define the device instance
and the MatrixBBC should automatically fill in the

remaining network inform ai ton based on the table entry
MatrixBBC Programmers Guide (10/5/2012) 5-5

NOTIFICATION CLASS OVERVIEW SECTION 5: ALARM ROUTING
5-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 6: DATA STORAGE

This section describes the usage of Analog Value, Binary Value, and Trend Log objects within the
MatrixBBC. The MatrixBBC will support up to 1000 Analog Values, 1000 Binary Values, and 256 Trend
Log objects.
IN THIS SECTION
Data Storage Overview .. 6-3
 Programming Concepts and Techniques .. 6-3
 Make the object-name Unique ... 6-3
 Enable Alarming When Needed... 6-3
Analog Value Objects... 6-4
 Creating Analog Values in the MatrixBBC... 6-4
 Configuring Alarm/Event Notifications... 6-4
 Analog Value Application Examples.. 6-5
Binary Value Objects.. 6-7
 Creating Binary Values in the MatrixBBC.. 6-7
 Configuring Alarm/Event Notifications... 6-7
Trend Log Objects.. 6-8
 Creating Trend Logs in the MatrixBBC ... 6-8
 Configuring the Object-Property for Sampling .. 6-8
 Configuring the Start and Stop Times ... 6-9
 Configuring the Logging Type ... 6-10
 Enabling the Trend Log... 6-10
MatrixBBC Programmers Guide (10/5/2012) 6-1

SECTION 6: DATA STORAGE
6-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 6: DATA STORAGE DATA STORAGE OVERVIEW
6.1 DATA STORAGE OVERVIEW
The Data Storage area of the MatrixBBC provides general purpose software value objects that can be
used to store miscellaneous data such as set points and command toggles. More so, Data Storage objects
can also be used to provide alarm and event notification services to software values in the controller that
may not directly be addressed as a standard object. This section explains the use of Analog Value and
Binary Value objects and how they can be configured to provide alarm/event notifications of software
values within the controller.

Data that is stored within Analog and Binary Value objects is persistent - meaning that reboots and other
power cycles will not clear this data. This is helpful for situations where you may be tracking critical data
stored into Analog and Binary Values by Remaps, SPL Programming, or other sources.

6.1.1 PROGRAMMING CONCEPTS AND TECHNIQUES
Data Storage objects exist in the controller to reduce the amount of line-by-line SPL programming that one
would need to write to carry out advanced control functions. To enhance your programming experience,
the following are a few helpful concepts and techniques to keep in mind when using these objects.

6.1.1.1 MAKE THE OBJECT-NAME UNIQUE
The MatrixBBC supports the ability to allow each object’s name to be assigned a custom value. By default,
the software uses generic names for objects. For ease of programming and flow, it is strongly
recommended that you change the object-name of any used Data Storage object. This allows you not only
to keep track of which objects have been used, but also allows you to easily troubleshoot your linked logic.

6.1.1.2 ENABLE ALARMING WHEN NEEDED
All Data Storage objects optionally support alarming. When alarming is disabled (EA) Enable Alarming =
Disabled (0), fewer properties will be displayed in NB-Pro, allowing the objects to be interpreted easier
during programming.
MatrixBBC Programmers Guide (10/5/2012) 6-3

ANALOG VALUE OBJECTS SECTION 6: DATA STORAGE
6.2 ANALOG VALUE OBJECTS
Analog Values objects within the MatrixBBC are general purpose and can be used for any basic need
within your application. Information stored within this object is represented in a floating point manner.
Through use of Local Remap objects, other numeric data types such as Unsigned and Signed Integers
can be transferred and exposed if desired. Analog Values support many useful features of the BACnet
standard, including:
. Configurable object name
. Command Prioritization (Priority Array)
. Alarm and Event Notification services

As an additional degree of flexibility, any value commanded to the Analog Value will retain its last known
value in the event of a restart due to power loss, cycle, etc.

6.2.1 CREATING ANALOG VALUES IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Analog Value objects are created by the technician when necessary, and are done in a dynamic manner.
The MatrixBBC will support a maximum of 1000 Analog Value objects.

To create an Analog Value object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M1) Max Analog Value Objects property. By default, this value is set to 0, indicating no

Analog Value objects exist.
3. Write the number of total Analog Value objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Analog Value objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Analog Value objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

6.2.2 CONFIGURING ALARM/EVENT NOTIFICATIONS
Analog Values can be configured to support alarm/event notifications. To enable alarming for an Analog
Value, set (EA) Enable Alarming = True. Once configured, additional properties will become available
that control the setup and configuration of how alarms/events are handled by the object.

Analog Value objects can be configured to trigger one of the two following conditions:
. Low Limit - occurs when present-value is less than the value specified in low-limit.
. High Limit - occurs when present-value is greater than the value specified in high-limit.

To enable one of the two alarm conditions mentioned above, perform the following:
1. Configure notification-class to determine which Notification Class object will route objects for the

alarm. If you have configured Notification Class, Instance 0, then a value of 0 must be referenced.
2. Configure notify-type to determine whether the notification will be of an Alarm type or Event type.
3. Configure limit-enable to enable low-limit or high-limit alarming. This is accomplished by placing a

check into each associated limit type.
4. Configure event-enable to have the object send alarms for how alarms transition. For example, if you

wish to have the MatrixBBC send a notification when the object enters and exits the alarm thresholds,
place a check into the “To-Normal” and “To-OffNormal” boxes.

5. Configure your high-limit and low-limit properties accordingly.
6-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 6: DATA STORAGE ANALOG VALUE OBJECTS
6. Configure the time-delay and deadband properties. The time-delay property defines a threshold of
time (in seconds) where the present-value must exceed one of the limit properties in order for an
alarm/event condition to be considered. The deadband property defines an offset from low-limit or
high-limit that must be met in order for an alarm/event condition to be considered. For example, if
high-limit = 75.0, deadband = 2.0, and time-delay = 5, the present-value must exceed 77.0 for at
least 5 seconds before an alarm/event condition is considered.

6.2.3 ANALOG VALUE APPLICATION EXAMPLES
The following are some common examples of how an Analog Value may be used within the MatrixBBC for
specific applications.

6.2.3.1 RUNTIME LIMIT ALARMING
A site may require the ability to receive runtime limit alarms for specific equipment (such as pumps, fans,
generators, etc.). While the runtime hours is a property available from most inputs and outputs, they are
not directly configurable for alarms directly from the input or output.

To generate runtime alarms, you must use an Analog Value object. To setup a runtime alarm for an object
(in this example, we will use Binary Input 1’s run hours, perform the following steps:
1. Configure a Local Remap to map the (RH) Run Hours property of Binary Input 1 to Analog Value 1;

present-value. Your Local Remap configuration should look similar to the illustration below.

Figure 6-1 Remapping Run Hours to Analog Value 1

2. Analog Value 1 will now contain the (RH) Run Hours property value from Binary Input 1. Enable
alarming on the Analog Value via (EA) Enable Alarming = 1, and configure your alarm parameters
accordingly.
MatrixBBC Programmers Guide (10/5/2012) 6-5

ANALOG VALUE OBJECTS SECTION 6: DATA STORAGE
Figure 6-2 Analog Value Configured for Run Hour Alarming
6-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 6: DATA STORAGE BINARY VALUE OBJECTS
6.3 BINARY VALUE OBJECTS
Binary Values objects within the MatrixBBC are general purpose and can be used for any basic need
within your application. Information stored within this object is represented as an Inactive/Active manner.
Through use of Local Remap objects, other numeric data types such as Unsigned and Signed Integers,
and Booleans can be transferred and exposed if desired. Binary Values support many useful features of
the BACnet standard, including:
. Configurable object name
. Command Prioritization (Priority Array)
. Alarm and Event Notification services

As an additional degree of flexibility, any value commanded to the Binary Value will retain its last known
value in the event of a restart due to power loss, cycle, etc.

6.3.1 CREATING BINARY VALUES IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Binary Value objects are created by the technician when necessary, and are done in a dynamic manner.
The MatrixBBC will support a maximum of 1000 Binary Value objects.

To create an Binary Value object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M2) Max Binary Value Objects property. By default, this value is set to 0, indicating no

Binary Value objects exist.
3. Write the number of total Binary Value objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Binary Value objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Binary Value objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

6.3.2 CONFIGURING ALARM/EVENT NOTIFICATIONS
Binary Values can be configured to support alarm/event notifications. To enable alarming for an Binary
Value, set (EA) Enable Alarming = True. Once configured, additional properties will become available that
control the setup and configuration of how alarms/events are handled by the object.

Binary Value object alarms/events are triggered based on the setting of the alarm-value property.

To enable one of the two alarm conditions mentioned above, perform the following:
1. Configure notification-class to determine which Notification Class object will route objects for the

alarm. If you have configured Notification Class, Instance 0, then a value of 0 must be referenced.
2. Configure notify-type to determine whether the notification will be of an Alarm type or Event type.
3. Configure event-enable to have the object send alarms for how alarms transition. For example, if you

wish to have the MatrixBBC send a notification when the object enters and exits the alarm thresholds,
place a check into the “To-Normal” and “To-OffNormal” boxes.

4. Configure the time-delay property. The time-delay property defines a threshold of time (in seconds)
where the present-value must exceed one of the limit properties in order for an alarm/event condition
to be considered.
MatrixBBC Programmers Guide (10/5/2012) 6-7

TREND LOG OBJECTS SECTION 6: DATA STORAGE
6.4 TREND LOG OBJECTS
Trend Log objects within the MatrixBBC are BACnet compliant objects used to trend a single object-
property reference. The MatrixBBC supports a maximum of 256 Trend Log objects.

Trend Log functionality within the MatrixBBC differs greatly in comparison to standard trending capabilities
that are used within the AspectFT system architecture. Trend Logs created within the MatrixBBC will retain
up to 256 samples until the data needs to be collected and cleared using an automated trend retrieval
process, but can be extended to support up to 1999 samples per Trend Log.

6.4.1 CREATING TREND LOGS IN THE MATRIXBBC
To create a Trend Log object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MF) Max Trend Objects property. By default, this value is set to 0, indicating no Trend Log

objects exist.
3. Write the number of total Trend Log objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Trend Log objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Trend Log objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

6.4.2 CONFIGURING THE OBJECT-PROPERTY FOR SAMPLING
Trend Logs can reference a single point for data collection. The reference to this point is reflected in the
log-device-object-property. The point being collected can be any point internal to the MatrixBBC, or a point
on a remote BACnet device. To configure, perform the following steps:
1. Using NB-Pro, locate the log-device-object-property in the Trend Log object.
2. Using the editor shown, enter the object type, instance, property. For a point residing on a remote

device, be sure to enter the remote device’s Device Instance into the form.

CAUTION
Currently, AspectFT v1.08.02 and earlier does not
support the ability to retrieve data stored in BACnet
Trend Logs. Until such time that support is
implemented, you should use AspectFT trending to
collect data from any BACnet architecture using the
MatrixBBC.
6-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 6: DATA STORAGE TREND LOG OBJECTS
Figure 6-3 - Configuring the log-device-object-property

3. Click Update Value.

6.4.3 CONFIGURING THE START AND STOP TIMES
Trend Logs objects can reference a start and stop time that is used to dictate the effective period of when
sampling should occur. In order for a Trend Log to initially collect data, the BACnet standard requires a
valid start-time and stop-time to be programmed. These properties indicate the month, date, year, and
time for effectivity.

To configure, perform the following steps:
1. Using NB-Pro, locate the start-time and stop-time properties in the Trend Log object.
2. Using the editor shown, enter a valid date and time for each.

Figure 6-4 - Configuring the start-time and stop-time

3. Click Update Value.
4. Ensure that both the start-time and the stop-time have been configured.

CAUTION
The current revision of the BACnet standard does
not permit the use of wildcard placeholders for
start-time and stop-time. While the editors in NB-
Pro do permit these entries, the product cannot
function in this manner at this time. This is a
limitation imposed by BACnet Testing Laboratories.
MatrixBBC Programmers Guide (10/5/2012) 6-9

TREND LOG OBJECTS SECTION 6: DATA STORAGE
6.4.4 CONFIGURING THE LOGGING TYPE
Trend Logs can collect data either using polled or COV intervals. Polled manners occur on a specific
duration interval which is specified in the log-interval property. For COV collection, the device you wish to
collect data from must support the Subscribe-COV service. In addition to this, you must configure the cov-
resubscription-interval. By default, re-subscription will occur once ever 60 minutes to ensure values are
received when a change occurs.

To configure the logging type, perform the following steps:
1. Using NB-Pro, locate the logging-type property. By default, Trend Logs are configured to perform

polled collection. If you elect to use polled collection, simply configure the log-interval. This property
defaults to 6,000 - which is the equivalent of 1 minute.

2. If you wish to collect data via COV, set logging-type to a value of Polled (1). COV logging can be per-
formed with standard objects (AI, AO, AV, BI, BO, BV) within the MatrixBBC, or with other remote
devices that support COV services.

6.4.5 ENABLING THE TREND LOG
To enable the Trend Log, set log-enable to a value of True (1).
6-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION

This section reviews the Data Manipulation group of objects within the MatrixBBC, which are logic-based
blocks used to assist in the setup and creation of control applications.
IN THIS SECTION
Data Manipulation Overview .. 7-3
 Programming Concepts and Techniques .. 7-3
 Make the object-name Unique ... 7-3
 Referencing Object Properties... 7-3
 The Present-Value Property... 7-3
Math ... 7-4
 Creating Math Objects in the MatrixBBC .. 7-4
 Math Object Configuration .. 7-4
 Feedback Text... 7-5
Logic .. 7-6
 Creating Logic Objects in the MatrixBBC.. 7-6
 Logic Object Configuration.. 7-6
Min/Max/Avg .. 7-7
 Creating Min/Max/Avg Objects in the MatrixBBC.. 7-7
Enthalpy ... 7-8
 Creating Enthalpy Objects in the MatrixBBC .. 7-8
Scale .. 7-9
 Creating Scale Objects in the MatrixBBC ... 7-9
 Scale Object Configuration ... 7-9
Input Select .. 7-10
 Creating Input Select Objects in the MatrixBBC ... 7-10
 Input Select Object Configuration ... 7-10
Staging ..7-11
 Creating Staging Objects in the MatrixBBC ...7-11
 Basic Configuration..7-11
 Configuring the Input Object Property Reference .. 7-12
 Configuring the Number of Stages... 7-12
 Configuring the Lead/Lag/Leveling Mode .. 7-12
 Configuring the Control Sign.. 7-12
 Staging Modes .. 7-12
 Delay On/Delay Off .. 7-12
 Threshold Based Staging... 7-13
 Stage Interlocking.. 7-13
MatrixBBC Programmers Guide (10/5/2012) 7-1

SECTION 7: DATA MANIPULATION
7-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION DATA MANIPULATION OVERVIEW
7.1 DATA MANIPULATION OVERVIEW
The Data Manipulation object library provides many helpful logic blocks, which can be used to setup linking
logic to perform control routines. The Data Manipulation library provides multiple quantities of each object
type, including:
. Math: used to perform simple math functions such as Add, Subtract, etc.
. Logic: used to perform boolean logic functions such as AND, OR, NOT, etc.
. Min/Max/Avg: used to determine minimum, maximum, and average values.
. Enthalpy: used to calculate enthalpy by referencing temperature and humidity values.
. Scaling: used to create a linear, interpolation scale between defined ranges.
. Input Selects: used to select one of two input values based on boolean selection criteria.

Through using any of the logic blocks listed above, you can reference the present-value in any logic object
within the MatrixBBC.

7.1.1 PROGRAMMING CONCEPTS AND TECHNIQUES
Data Manipulation objects exist in the MatrixBBC to reduce the amount of line-by-line SPL programming
that one would need to write to carry out advanced control functions. The following are some helpful
concepts and techniques to keep in mind when using these objects.

7.1.1.1 MAKE THE OBJECT-NAME UNIQUE
The MatrixBBC supports the ability to allow each object’s name to be assigned a custom value. By default,
the software uses generic names for objects. For ease of programming and flow, it is strongly
recommended that you change the object-name of any used Data Manipulation object. This allows you not
only to keep track of which objects have been used, but also allows you to easily troubleshoot your linked
logic.

7.1.1.2 REFERENCING OBJECT PROPERTIES
To use these blocks, you must reference an object property. This is accomplished by identifying the object-
identifier, and property using a series of available properties (e.g. (IO) Input Object, (IP) Input Property)
of each block.

7.1.1.3 THE PRESENT-VALUE PROPERTY
The present-value property of each block (with the exception of Min/Max/Average blocks) is always the
result of the logic operation. The value can be referenced by other object functions of the MatrixBBC or
shared amongst one another if desired.
MatrixBBC Programmers Guide (10/5/2012) 7-3

MATH SECTION 7: DATA MANIPULATION
7.2 MATH
Math objects are used to apply a chosen math operator against two specific object properties.
Configuration of this object involves referencing the two object properties, as well as selecting the
operators. The object’s present-value will reflect the result of the math operation.

7.2.1 CREATING MATH OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Math objects are created by the technician when necessary, and are done in a dynamic manner. The
MatrixBBC supports up to a maximum of 64 Math objects.

To create a Math object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M7) Max Math Objects property. By default, this value is set to 0, indicating no Math objects

exist.
3. Write the number of total Math objects you wish to have in the MatrixBBC. For example, if you wish to

have 10 Math objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Math objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

7.2.2 MATH OBJECT CONFIGURATION
The (OP) Operation property specifies the math operator applied against the first and second term. The
choices for operation that can be used are displayed in Table 7-1

Each Math object also provides boolean logic feedback on math values. Through several additional
properties available in the Math object, users can obtain feedback on Input 1 versus Input 2. Boolean logic
provided includes:
. Greater Than - using the (GT) Input One is > Input 2 property
. Greater Than Equal - using the (GE) Input One is >= Input 2 property
. Less Than - using the (LT) Input One is < Input 2 property
. Less Than Equal - using the (LE) Input One is <= Input 2 property
. Equals - using the (ET) Input One is = Input 2 property.

Table 7-1: Math Object Operator Choices

Value Operation

0 Disabled

1 Addition

2 Subtraction

3 Multiplication

4 Division

5 Minimum

6 Maximum

7 Average
7-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION MATH
7.2.3 FEEDBACK TEXT
Each Math object includes feedback text, providing additional information regarding the overall health and
functionality of the object. If both defined inputs are able to be read successfully, the object will report back
a message such as “Object Is Active & Working. Operation: Addition”.

However, if a problem is detected with one or all of the defined inputs, a message such as “Object Unable
to Read Input 1” will appear. Depending on the object, the message will differ based on the erroring input.
MatrixBBC Programmers Guide (10/5/2012) 7-5

LOGIC SECTION 7: DATA MANIPULATION
7.3 LOGIC
Logic objects are used to perform logical operations using selectable object properties and a choice of
operator. Up to eight (8) object properties can be referenced in a Logic object. The object’s present-value
will reflect that result of the logic operation.

7.3.1 CREATING LOGIC OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Logic objects are created by the technician when necessary, and are done in a dynamic manner. The
MatrixBBC support up to a maximum of 64 Logic objects.

To create a Logic object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M6) Max Logic Objects property. By default, this value is set to 0, indicating no Logic

objects exist.
3. Write the number of total Logic objects you wish to have in the MatrixBBC. For example, if you wish to

have 10 Logic objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Logic objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

7.3.2 LOGIC OBJECT CONFIGURATION
The (OP) Operation property specifies the logic operator applied against the referenced object properties.
The choices for operator that can be used are displayed in Table 7-2.

Table 7-2: Logic Object Operator Choices

Value Operation Notes

0 Disabled Disables the object.

1 OR Performs a logical “OR” on all of the referenced object
properties. If any of the referenced object properties
are true (value of 1), present-value = true. If all of the
referenced object properties are false (value of 0), then
present-value = false.

2 AND Performs a logical “AND” on all of the referenced object
properties. If all of the referenced object properties are
true (value of 1), present-value = true. If any of the
inputs are false (value of 0), then present-value =
false.

3 NOT Performs a logical “NOT” against the first referenced
object property (I1 and A1).

4 XOR Performs a local “XOR” on all of the referenced object
properties. If any one of the referenced object
properties is true (value of 1), then present-value = 1.
Otherwise, present-value = false.
7-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION MIN/MAX/AVG
7.4 MIN/MAX/AVG
Mix/Max/Avg objects are used to calculate the minimum, maximum, and average values of reference
object properties within the block. Up to four (4) object properties can be referenced by each Min/Max/Avg
block. The MatrixBBC supports up to a maximum of 64 Math objects.

The (HV) High Value property will output the highest value of all referenced object property.
The (LV) Low Value property will output the lowest value of all referenced object property.
The (AV) Average Value property will reference the arithmetic mean of all referenced object properties.

7.4.1 CREATING MIN/MAX/AVG OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Min/Max/Avg objects are created by the technician when necessary, and are done in a dynamic manner.

To create a Min/Max/Avg object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M8) Max MinMaxAvg Objects property. By default, this value is set to 0, indicating no Min/

Max/Avg objects exist.
3. Write the number of total Min/Max/Avg objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Min/Max/Avg objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Min/Max/Avg objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.
MatrixBBC Programmers Guide (10/5/2012) 7-7

ENTHALPY SECTION 7: DATA MANIPULATION
7.5 ENTHALPY
Enthalpy objects are used to calculate enthalpy based on a referenced temperature and referenced
humidity value. The referenced values can be connected to inputs, retrieved using Netmap Objects, taken
from Analog Value objects, etc. The MatrixBBC support up to a maximum of 64 Enthalpy objects.

The present-value is the result of this calculation.

Figure 7-1 - Enthalpy Object Example

7.5.1 CREATING ENTHALPY OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Enthalpy objects are created by the technician when necessary, and are done in a dynamic manner.

To create an Enthalpy object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (ME) Max Enthalpy Objects property. By default, this value is set to 0, indicating no Enthalpy

objects exist.
3. Write the number of total Enthalpy objects you wish to have in the MatrixBBC. For example, if you wish

to have 10 Enthalpy objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Enthalpy objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.
7-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION SCALE
7.6 SCALE
Scale objects perform a linear interpolation between two known points, which can be used to scale a single
value within programming by looking up values that lie along the created linear segment. A referenced
object property’s value is applied against the scale. As a result, present-value will indicate the calculated
scale value. The MatrixBBC will support up to a maximum of 64 Scale objects.

7.6.1 CREATING SCALE OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Scale objects are created by the technician when necessary, and are done in a dynamic manner.

To create a Scale object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M4) Max Scale Objects property. By default, this value is set to 0, indicating no Scale

objects exist.
3. Write the number of total Scale objects you wish to have in the MatrixBBC. For example, if you wish to

have 10 Scale objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Scale objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

7.6.2 SCALE OBJECT CONFIGURATION
Properties (X1) Input Range X1 Value, (X2) Input Range X2 Value and (Y1) Output Range Y1, (Y2)
Output Range Y2 indicate the x- and y-coordinate values to be used for the starting and ending points of
the line segment. Both x- and y-coordinate values are given in engineering units of your input object
property.

Figure 7-2 - Scaling Example

In the example shown above, we have configured an Input range for 0 and 100, and our output range for
100 to 200. In this example, when our input value (which is linked to Analog Output 1; present-value) is at
a value of 10.0, the result of the scale will output a value of 110.0.
MatrixBBC Programmers Guide (10/5/2012) 7-9

INPUT SELECT SECTION 7: DATA MANIPULATION
7.7 INPUT SELECT
Input Select objects allow you to choose one of two referenced object property values based on a true/
false input status. The MatrixBBC supports up to a maximum of 64 Input Select objects.

7.7.1 CREATING INPUT SELECT OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Input Select objects are created by the technician when necessary, and are done in a dynamic manner.

To create an Input Select object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M9) Max Input Select Objects property. By default, this value is set to 0, indicating no Input

Select objects exist.
3. Write the number of total Input Select objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Input Select objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Input Select objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

7.7.2 INPUT SELECT OBJECT CONFIGURATION
To use an Input Select object, you must reference two object properties, along with a selection criteria
reference.

If the selection criteria is false (value of 0), then present-value will equal the value of the first object
property reference (I1, A1). If the selection criteria is true (value other than 0), then present-value will
equal the value of the second object property reference (I2, A2).

Figure 7-3 - Input Select Example
7-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION STAGING
7.8 STAGING
Staging objects are used to perform staging of binary outputs for control related purposes, but can also be
used to trigger other control logic if deemed necessary. Each Staging object provides support for multiple
staged outputs (as few as two, as many as eight), each with a dedicated setpoint, feedback status, and
runtime timer. Stages can be configurably transitional for lead/lag, and wear leveling. The MatrixBBC
supports up to a maximum of 16 Staging objects.

Figure 7-4 Staging Object View

7.8.1 CREATING STAGING OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Staging objects are created by the technician when necessary, and are done in a dynamic manner.

To create a Staging object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MJ) Max Staging Objects property. By default, this value is set to 0, indicating no Staging

objects exist.
3. Write the number of total Staging objects you wish to have in the MatrixBBC. For example, if you wish

to have 10 Staging objects, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Staging objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

7.8.2 BASIC CONFIGURATION
The following basic configuration items should be taken into account prior to defining the staging mode.
MatrixBBC Programmers Guide (10/5/2012) 7-11

STAGING SECTION 7: DATA MANIPULATION
7.8.2.1 CONFIGURING THE INPUT OBJECT PROPERTY REFERENCE
The Staging object will energize and de-energize stages based on the value received from the configured
input object-property reference. The input object-property reference is configured using properties (IO)
Input Object and (IP) Input Property.

When the Staging object is activated, the current value of the input object property will be reflected in
property (IV) Input Value.

7.8.2.2 CONFIGURING THE NUMBER OF STAGES
Determine how many output stages you wish to have. This is defined using the (NS) Number of Stages
<Max Loading> property. Each Staging object can support as few as two outputs, or as many as eight
output stages.

When you have successfully configured the entire Staging object for control, the control value for each
Stage is defined in property (S1) Stage 1 Status through (S8) Stage 8 Status. In Binary Output control
methods, a corresponding stage status property would be addressed by the Binary Output’s AutoStuff
process (reference the Outputs Setup section for additional information).

7.8.2.3 CONFIGURING THE LEAD/LAG/LEVELING MODE
Output stages can be enabled/disabled based on Normal Mode, or through Wear Leveling.

In the Normal Mode, stage outputs will energize in a classic First On / Last Off method. For example, when
stages are called, they will be energized in logical order (Stage 1, Stage 2, Stage 3,...). When de-activation
occurs, the last stage on will be turned off first (Stage 8, Stage 7, Stage 6,...).

In Wear Leveling Mode, stages will be turned on and off based on the runtimes for each stage. This
method allows each mechanical stage to be used for an even amount of time - thereby increasing the
lifespan of equipment. Runtimes are tracked for each stage through properties (R1) Stage 1 Runtime
through (R8) Stage 8 Runtime. When stages are called, stages are energized based on the least amount
of runtime.

7.8.2.4 CONFIGURING THE CONTROL SIGN
Staging is commonly used for heating or cooling. This is controlled by how setpoints control the stages.
Property (IS) Invert the Setpoints? <Higher Stages = Lower Numbers> essentially commands how
staging will work.

When set to False, the Staging object will work in a Heating-like mode, where stage outputs are enabled
as the input variable exceeds defined setpoints.

When set to True, the Staging object will work in a Cooling-like mode, where stage outputs are enabled as
the input variable falls below defined setpoints.

7.8.3 STAGING MODES
The Staging object provides two different modes of how outputs can be staged. The mode is directly
controlled through (SM) Staging Mode. There are two options that can be selected for staging.

7.8.3.1 DELAY ON/DELAY OFF
The Delay On/Delay Off mode utilizes two definable setpoints to enable and disable stages based on
timed intervals. When Delay On/Delay Off mode has been selected, the object will transition its properties
7-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 7: DATA MANIPULATION STAGING
to provide a (SU) Unloading Setpoint and (SL) Loading Setpoint. These setpoints determine when
stages will be disabled (unloaded) and enabled (loaded).

When the referenced object-property exceeds the value defined in (SL) Loading Setpoint, output stages
will be energized (turned on) based on property (LD) Loading Interval <Seconds>. In this scenario, the
first stage will be energized, and wait the amount of time specified in LD. Once the time has expired, the
next stage will be energized, followed by the delay specified in LD. This process will repeat until all stages
have been energized.

When the referenced object-property falls below the value defined in (SU) Unloading Setpoint, output
stages will be de-energized (turned off) based on property (UD) Unloading Interval <Seconds>. In this
scenario, the last stage energized during loading will be de-energized, and wait the amount of time
specified in UD. On the time has expired, the next stage will be de-energized, followed by the delay
specified in UD. This process will repeat until all stages have been deactivated.

For troubleshooting and convenience, two timers are provide to allow users to know when the next loading
or unloading event will occur. These properties, (LR) Seconds Until Next Loading Event Could Occur
and (UL) Seconds Until Next Unloading Event Could Occur, can be found in the Staging object and
monitored using an engineering tool or front-end.

7.8.3.2 THRESHOLD BASED STAGING
The Threshold Based Staging mode utilizes a setpoint for each individual stage, rather than a single
setpoint. When Threshold Based Staging mode has been selected, the object transition its properties to
provide up to eight setpoints properties, defined as (P1) Stage 1 Setpoint through (P8) Stage 8 Setpoint.

Stages will be energized (turned on) when the referenced input object-property has exceeded each
defined stage setpoints. In the event that a large value increase occurs, multiple stages will be energized
in a time delayed manner based on the configuration of (LD) Loading Interval <Seconds>.

When the referenced object-property falls below each defined setpoint, output stages will be de-energized
(turned off). In the event of a large decrease of the input object-property value, multiple stages will be de-
energized in time delayed manner based on the configuration of (UD) Unloading Interval <Seconds>.

7.8.4 STAGE INTERLOCKING
Staging can also be subject to interlocking. Interlocking may be used to lock out stages in certain situations
(e.g. supply air temperature or outside air temperature exceeds a specific setpoint value).

The Interlock input is defined using properties (OO) Interlock Override Object and (OP) Interlock
Override Property. When the Interlock input is a non-zero value, all of the Stages will become interlocked,
whereas a zero value will disable interlocking - allowing the Staging object to resume normal operations.

The state of each stage (enabled/disabled) when the Interlock input is a non-zero value is controlled
through property (OM) Interlock Staging Map. When a specific stage has a check mark next to it, this
commands the Interlock routine to energize (turn on) the corresponding stage. When a specific stage has
no check mark next to it, this commands the Interlock routine to de-energize (turn off) the corresponding
stage.

For troubleshooting purposes, property (OS) Interlock Status will provide plain-English feedback as to the
current status of the Interlocking process.
MatrixBBC Programmers Guide (10/5/2012) 7-13

STAGING SECTION 7: DATA MANIPULATION
7-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 8: DATA MOVEMENT

This section reviews the Data Movement group of objects within the MatrixBBC, which are logic-based
blocks which can be used to move values from one object to another within the controller, broadcast
values to a group of devices, or even read and write information over the BACnet network to/from peer
devices.
IN THIS SECTION
Data Movement Overview.. 8-3
 Programming Concepts and Techniques .. 8-3
 Make the object-name Unique ... 8-3
 Referencing Object Properties... 8-3
 The Present-Value Property... 8-3
Broadcasts ... 8-4
 Creating Broadcast Objects in the MatrixBBC .. 8-4
 Broadcasting Concepts ... 8-4
 Sending a Broadcast... 8-5
 Receiving a Broadcast .. 8-5
 Feedback and Status Information ... 8-5
Local Remaps .. 8-6
 Creating Local Remap in the MatrixBBC .. 8-6
 Remap Mode .. 8-6
 Data Coercion Protection .. 8-7
 Feedback and Status Information ... 8-7
Netmap Objects ... 8-9
 Creating Netmap Objects in the MatrixBBC.. 8-9
 Netmap Mode ... 8-9
 Feedback and Status Information ... 8-10
MatrixBBC Programmers Guide (10/5/2012) 8-1

SECTION 8: DATA MOVEMENT
8-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 8: DATA MOVEMENT DATA MOVEMENT OVERVIEW
8.1 DATA MOVEMENT OVERVIEW
The Data Movement object library provides many helpful logic blocks, used to move data from one part of
the controller to another.
. Broadcasts: used to send/receive information to multiple controllers without writing complex logic.
. Local Remaps: used to move data back and forth between two different points local to the MatrixBBC.
. Netmaps: exactly like a Local Remap, but can also move data to/from other devices on the network.

Through using any of the logic blocks listed above, you can reference the present-value in any logic object
within the MatrixBBC.

8.1.1 PROGRAMMING CONCEPTS AND TECHNIQUES
Data Movement objects exist in the MatrixBBC to reduce the amount of line-by-line SPL programming that
one would need to write to carry out advanced control functions. The following are some helpful concepts
and techniques to keep in mind when using these objects.

8.1.1.1 MAKE THE OBJECT-NAME UNIQUE
The MatrixBBC supports the ability to allow each object’s name to be assigned a custom value. By default,
the software uses generic names for objects. For ease of programming and flow, it is strongly
recommended that you change the object-name of any used Data Movement object. This allows you not
only to keep track of which objects have been used, but also allows you to easily troubleshoot your linked
logic.

8.1.1.2 REFERENCING OBJECT PROPERTIES
To use these blocks, you must reference an object property. This is accomplished by identifying the object-
identifier, and property using a series of available properties (e.g. (O1) Input Object, (P1) Input Property)
of each block.

8.1.1.3 THE PRESENT-VALUE PROPERTY
The present-value property of each block is always the result of the operation. The value can be
referenced by other object functions of the MatrixBBC or shared amongst one another if desired.
MatrixBBC Programmers Guide (10/5/2012) 8-3

BROADCASTS SECTION 8: DATA MOVEMENT
8.2 BROADCASTS
Broadcast objects allow the MatrixBBC to send and receive values over the network at configured time
intervals to AAM Native Series devices. The MatrixBBC will support up to a maximum of 8 Broadcast
objects. When an object is configured to send or receive a broadcast, present-value will display the
property value being sent or received from the network.

8.2.1 CREATING BROADCAST OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Broadcast objects are created by the technician when necessary, and are done in a dynamic manner.

To create a Broadcast object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MT) Max Broadcast Objects property. By default, this value is set to 0, indicating no Broad-

cast objects exist.
3. Write the number of total Broadcast objects you wish to have in the MatrixBBC. For example, if you

wish to have all 8 Broadcast objects available, write a value of 8.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Broadcast objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

8.2.2 BROADCASTING CONCEPTS
Before configuring broadcasts on your BACnet network, there are a few concepts that should be followed
when performing Broadcasts.

8.2.2.1 OUTSIDE AIR TEMPERATURE BROADCASTS
If you intend on sending an Outside Air Temperature broadcast to other Native Series devices, such as
NB-ASC(e) devices, you must send the broadcast using Broadcast, Instance 3. The value sent must be a
floating point datatype.

8.2.2.2 SCHEDULE BROADCASTS

NOTE
Broadcast objects are intended to send “primitive”
datatypes, such as REAL, UNSIGNED,
BOOLEAN, etc.

CAUTION
Configuring the Outside Air Temperature Broadcast
object to send a value that is not a floating point
datatype will result in recipient NB-ASC family
controllers rejecting the data.
8-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 8: DATA MOVEMENT BROADCASTS
If you intend on sending a Schedule broadcast to other Native Series devices, such as NB-ASC(e) or NB-
VAV devices, you must send the broadcast using Broadcast, Instance 5. More so, the datatype must be an
Unsigned Integer.

8.2.3 SENDING A BROADCAST
To configure an object to send a broadcast, perform the following steps:
1. Configure (BM) Broadcasting Mode = Send (1).
1. Reference the object property you wish to broadcast by configuring (IO) Input Object and (IP) Input

Property.
2. Configure (BZ) Broadcast Zone/Global accordingly.
3. Configure (ZN) Zone Number for the controller zone you wish to send the broadcast to.
4. Configure (BT) Broadcast Time Interval. Determine the time interval, in minutes, you wish to have

the MatrixBBC send the broadcast.

8.2.4 RECEIVING A BROADCAST
To configure an object to send a broadcast, perform the following steps:
1. Configure (BM) Broadcasting Mode = Receive (2).
2. Configure (ZN) Zone Number for the controller zone you wish to send the broadcast to.

8.2.5 FEEDBACK AND STATUS INFORMATION
Broadcast objects provide a feedback property, (FB) Feedback Text, that provides up to date information
regarding the health of the object. This property can be monitored via NB-Pro or even an operator
workstation or web server. The following table provides a list of the messages and statuses.

CAUTION
Configuring the Schedule Broadcast object to send
a value that is not a Unsigned Integer datatype will
result in recipient NB-ASC family controllers
rejecting the data.

Table 8-1: Broadcast Feedback Text Notes

Feedback Notes

Broadcast Object Turned Off Broadcast object is disabled

Broadcast Object Active & Transmitting Self-explanatory

Broadcast Object Receiving Self-explanatory

Broadcast Object Unable to Read Input Self-explanatory
MatrixBBC Programmers Guide (10/5/2012) 8-5

LOCAL REMAPS SECTION 8: DATA MOVEMENT
8.3 LOCAL REMAPS
Local Remap objects are used to move data from one point to another in the controller. Effectively, Local
Remap objects accomplish an equate. In previous generations of controllers, line-by-line SPL was
required to stuff a value from one place to another. This object eliminates the need to do so. The
MatrixBBC will support up to a maximum of 64 Local Remap objects.

To use a Local Remap, you must specify an input object property and an output object property. The input
object property, defined by properties (O1) Input Object Reference and (P1) Input Property Reference.
This is essentially the left side of an equate statement.

The value of the referenced input object property will be transferred to the output object property, defined
by properties (O2) Output Object Reference and (P2) Output Property Reference. For situations where
you are remapping a value to the present-value property of a commandable object (AO, AV, BO, BV, etc.),
you must specify the priority array level which the value will be assigned to. This is accomplished through
(Q2) Output Priority Level. By default, this value is set to 255 for no priority. A priority range between 1
(highest priority) and 16 (lowest priority) is used by commandable objects.

8.3.1 CREATING LOCAL REMAP IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Local Remap objects are created by the technician when necessary, and are done in a dynamic manner.

To create a Local Remap object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MA) Max Remap property. By default, this value is set to 0, indicating no Local Remap

objects exist.
3. Write the number of total Local Remap objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Local Remap, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Local Remap objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

8.3.2 REMAP MODE
Local Remaps can be configured to remap data on a continuous method, or a trigger method. A method is
chosen through (RM) Remap Mode. By default, remap objects are disabled. To enable the object, you
must select a valid mode from this property.

Table 8-2: Remap Modes

Remap Mode Notes

Disabled Remap object is disabled. No data transfer occurs.

Continuous Remap object is enabled. Data transfer occurs continuously.

When Triggered Remap object is enabled. Data transfer occurs continuously when
the referenced trigger object property value is active. If the trigger
referenced object property is inactive, no data transfer occurs.
8-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 8: DATA MOVEMENT LOCAL REMAPS
If you have elected to configure your remap object to operate by a trigger, you must specify a trigger object
property through properties (TO) Trigger Object and (TP) Trigger Property. Finally, configure the (TB)
Trigger Biasing to allow the Remap object to know what type of input value should be considered active
or inactive. A trigger can be considered active when a non-zero value is referenced, or when a zero-based
value is referenced.

8.3.3 DATA COERCION PROTECTION
Remap objects do provide good protection relative to data coercion (mis-matching data types) within logic
automatically.

Remaps will read from the specified input object property and will display that data in the present-value
property of the Local Remap. The present-value uses the same datatype as the input object property.
When that variable is then written to the output object property, the data is initially written as-is. If the data
is rejected due to it being the wrong datatype (e.g. remapping BO1; present-value to AO1; present-value),
the data will then be forced into the datatype of the value currently in the output object property. The data is
then written once more, using the preferred datatype.

8.3.4 FEEDBACK AND STATUS INFORMATION
Local Remap objects provide two feedback properties that provide up to date information regarding the
health of the object. These properties, (FB) Feedback Text and (RS) Remap Status will provide specific
information that can be monitored via NB-Pro or even an operator workstation or web server. The following
table provides a list of the messages and statuses.

When Triggered Else NULL Remap object is enabled. Data transfer occurs continuously when
the referenced trigger object property value is active. If the trigger
referenced object property is inactive, a NULL value is sent.

This Remap Mode is intended for use with writing to the present-
value of a commandable object (AO, AV, BO, BV, etc.)

NOTE
When configured for continuous mode, the
MatrixBBC will transfer data from input to output
once per second.

Table 8-3: Local Remap Object Feedback Information

Feedback Text Notes

Remap Object Turned Off Remap object is disabled via (RM) Remap
Mode.

Table 8-2: Remap Modes

Remap Mode Notes
MatrixBBC Programmers Guide (10/5/2012) 8-7

LOCAL REMAPS SECTION 8: DATA MOVEMENT
Remap Object Active & Working Remap object is working and actively
transferring data.

Remap Object Active & Working (And
Coercing Datatype)

Remap object is working, actively transferring
data, and is also coercing the datatype between
the input and output.

Remap Object Unable to Read Trigger Remap object cannot read the referenced
trigger input object property specified in (TO)
Trigger Object and (TP) Trigger Property.

Remap Object Unable to Read Input Remap object cannot read the referenced input
object property specified in (O1) Input Object
and (P1) Input Property.

Remap Object Unable to Write Output Remap object cannot transfer data to the output
object property specified in (O2) Output Object
and (O2) Output Property.

Table 8-3: Local Remap Object Feedback Information

Feedback Text Notes
8-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 8: DATA MOVEMENT NETMAP OBJECTS
8.4 NETMAP OBJECTS
Very similar to Local Remap objects, Netmap objects provide data movement both within the MatrixBBC
itself, as well as mode data to and from other devices on the network. Using a Netmap object, the
MatrixBBC can write data from within its control routine to another device on the BACnet network.
Alternatively, the MatrixBBC can take a value from a peer device on the BACnet network and write it to
another, different peer device on the BACnet network, peer to peer, or even MS/TP slaves on a local MS/
TP network. The MatrixBBC will support up to a maximum of 64 Netmap objects.

To use a Netmap, you must specify an input device-object-property, and an output device-object-property.
The input object property, defined by properties (II) Input Device Instance, (O1) Input Object Reference
and (P1) Input Property Reference. This is essentially the left side of an equate statement.

The value of the referenced input object property will be transferred to the output device-object-property
reference, defined by properties (OI) Output Device Instance, (O2) Output Object Reference and (P2)
Output Property Reference. For situations where you are mapping a value to the present-value property
of a commandable object (AO, AV, BO, BV, etc.), you must specify the priority array level which the value
will be assigned. This is accomplished through (Q2) Output Priority Level. By default, this value is set to
255 for no priority. A priority range between 1 (highest priority) and 16 (lowest priority) is used by
commandable objects.

Finally, configure the (TM) Time Between Writes in Seconds property to specify how often writes should
occur. A valid write time can be no faster than 30 seconds.

8.4.1 CREATING NETMAP OBJECTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Netmap objects are created by the technician when necessary, and are done in a dynamic manner.

To create a Netmap object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MB) Max Netmap Objects property. By default, this value is set to 0, indicating no Netmap

objects exist.
3. Write the number of total Netmap objects you wish to have in the MatrixBBC. For example, if you wish

to have 10 Netmap, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Netmap objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

8.4.2 NETMAP MODE
Netmaps are configured to remap data on a continuous method, or a trigger method. A method is chosen
through (NM) Netmap Mode. By default, Netmap objects are disabled. To enable the object, you must
select a valid mode from this property.

Table 8-4: Netmap Modes

Remap Mode Notes

Disabled Netmap object is disabled. No data transfer occurs.

Continuous Netmap object is enabled. Data transfer occurs continuously.
MatrixBBC Programmers Guide (10/5/2012) 8-9

NETMAP OBJECTS SECTION 8: DATA MOVEMENT
If you have elected to configure your Netmap object to operate by a trigger, you must specify a trigger
object property through properties (TO) Trigger Object and (TP) Trigger Property. Finally, configure the
(TB) Trigger Biasing to allow the Netmap object to know what type of input value should be considered
active or inactive. A trigger can be considered active when a non-zero value is referenced, or when a zero-
based value is referenced.

8.4.3 FEEDBACK AND STATUS INFORMATION
Netmap objects provide two feedback properties that provide up to date information regarding the health
of the object. These properties, (FB) Feedback Text and (RS) Remap Status will provide specific
information that can be monitored via NB-Pro or even an operator workstation or web server. The following
table provides a list of the messages and statuses.

When Triggered Netmap object is enabled. Data transfer occurs continuously when
the referenced trigger object property value is active. If the trigger
referenced object property is inactive, no data transfer occurs.

When Triggered Else NULL Netmap object is enabled. Data transfer occurs continuously when
the referenced trigger object property value is active. If the trigger
referenced object property is inactive, a NULL value is sent.

This Netmap Mode is intended for use with writing to the present-
value of a commandable object (AO, AV, BO, BV, etc.)

Table 8-5: Netmap Object Feedback Information

Feedback Text Notes

Netmap Object Turned Off Netmap object is disabled via (NM) Netmap
Mode.

Netmap Object Active & Working Netmap object is working and actively
transferring data.

Netmap Object Active & Working (And
Coercing Data)

Netmap object is working, actively transferring
data, and is also coercing the datatype between
the input and output.

Netmap Trigger is Off Netmap object cannot read the referenced
trigger input object property specified in (TO)
Trigger Object and (TP) Trigger Property.

Netmap Object Unable to Read Trigger Netmap object cannot read the referenced input
object property specified in (O1) Input Object
and (P1) Input Property.

Netmap Object Unable to Read Input Netmap object cannot transfer data to the
output object property specified in (O2) Output
Object and (O2) Output Property.

Table 8-4: Netmap Modes

Remap Mode Notes
8-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 8: DATA MOVEMENT NETMAP OBJECTS
Netmap Object Unable to Write Output Netmap object is disabled via (NM) Netmap
Mode.

Netmap Object Misconfigured Netmap object is working and actively
transferring data.

Table 8-5: Netmap Object Feedback Information

Feedback Text Notes
MatrixBBC Programmers Guide (10/5/2012) 8-11

NETMAP OBJECTS SECTION 8: DATA MOVEMENT
8-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O
This section discusses STATbus Expansion IO, including wiring and programming.
IN THIS SECTION
What are IOX Modules?... 9-3
 Features of IOX Modules .. 9-3
 Remote I/O and Mapping Points ... 9-3
IOX Module Specifications ... 9-4
 General ... 9-4
 SSB-FI1 .. 9-4
 SSB-UI1 .. 9-4
 SSB-AO1 .. 9-4
 SSB-DI1 .. 9-5
 SSB-DO1-I .. 9-5
 SSB-DO1-I .. 9-5
 SSB-DO2 .. 9-5
 SSB-DO2-I .. 9-5
 SSB-IOX1-1 .. 9-6
 SSB-IOX1-2 .. 9-6
 SSB-IOX2-1 .. 9-6
 SSB-IOX2-2 .. 9-6
Length of the Network .. 9-7
Number of Devices .. 9-8
 Communications Limits ... 9-8
GID Numbers and Mapping IOX Modules.. 9-10
 Writing GIDs to Devices .. 9-10
 Removing GID assignments ... 9-10
SSB-FI1 ... 9-12
SSB-UI1 ... 9-17
SSB-AO1 ... 9-24
SSB-DI1 ... 9-30
SSB-DO1 ... 9-35
SSB-DO1-I ... 9-39
SSB-DO2 ... 9-44
SSB-DO2-I ... 9-48
SSB-IOX1-x ... 9-54
SSB-IOX2-x ... 9-63
MatrixBBC Programmers Guide (10/5/2012) 9-1

SECTION 9: EXPANSION I/O
9-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O WHAT ARE IOX MODULES?
9.1 WHAT ARE IOX MODULES?
IOX modules are specialized STATbus devices which allow you to add remote I/O points to the MatrixBBC

These units have on-board I/O and, include the ability to add additional I/O, using IOX modules to achieve
the number of inputs and outputs needed. This allows you to craft a controller with a completely
customized I/O profile. In this way, you can tailor the controller to suit the job rather than designing the job
around the capabilities of a controller. This will allow you to make decisions based on good design
principles rather than system limitations.

9.1.1 FEATURES OF IOX MODULES
. Provide remote I/O points to MatrixBBC controllers
. Provide the ability to locate I/O hardware where it is most convenient
. Communication via STATbus
. Easy 2- or 4- wire connection using twisted pair wire
. Easy configuration within MatrixBBC using NB-Pro.

9.1.2 REMOTE I/O AND MAPPING POINTS
IOX modules provide additional, remote I/O points to MatrixBBC controllers. Modules exist that can
provide additional Universal Input, Pulse Input, Analog Output and Digital Output points. These points
appear to the controller to be identical to an on-board input or output, therefore only minimal additional
work is needed when commissioning IOX modules

Remote I/O behaves in the same way as on-board I/O, except that it is located remotely from the
controller. Because they are not on-board, each remote device requires a unique address, known as a
Global Identification (GID) number so that the controller may recognize and direct communications to it.
When working with IOX modules, there is the additional commissioning step of associating the remote I/O
point with inputs and outputs within the controller. This is accomplished by assigning the GID number of
the device to the desired input or output. Once the IOX module is mapped in this way, it will function as any
other input or output of the same type.
MatrixBBC Programmers Guide (10/5/2012) 9-3

IOX MODULE SPECIFICATIONS SECTION 9: EXPANSION I/O
9.2 IOX MODULE SPECIFICATIONS

9.2.1 GENERAL
9.2.1.1 NETWORKING
. communications protocol: STATbus
. wiring: 2- or 4-wire (device dependent), 18-22 ga., twisted pair
. update frequency: nominally every 100 mS
. network configuration: multidrop bus

9.2.1.2 TERMINATIONS
. Pluggable terminal blocks for inputs and/or outputs, power and network connection.

9.2.1.3 OPERATING ENVIRONMENT
. temperature range: 32-122°F (0-50°C)
. humidity range: 0-80% RH, non-condensing

9.2.1.4 AGENCY APPROVALS
. UL listed 916, Management Equipment, Energy (PAZX)
. FCC rules Part 15 Class B Computing Device
. UL 873 Recognized, Component-Temperature Indicating and Regulating Equipment
. Complies with CE directives and standards (XAPX2)

9.2.2 SSB-FI1
9.2.2.1 I/O
. One (1) 12-bit Universal Input (interpolated to a 16-bit value)
. Selectable 0-5 VDC,0-10 VDC, 0-20 mA or 0-250 k input range
9.2.2.2 POWER REQUIREMENTS
. None
9.2.2.3 DIMENSIONS
. size: 3.02 x 1.41 x. 0.95in. (7.67 x 3.58 x 2.41 cm)
. shipping weight: .04 lb. (.018 kg)

9.2.3 SSB-UI1
9.2.3.1 I/O
. One (1) 24-bit Universal Input
. Selectable 0-5 VDC,0-10 VDC, 0-20 mA or 0-250 k input range
9.2.3.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1 A (max)
9.2.3.3 DIMENSIONS
. size: 4.2 x 4.2 x 1.0 in. (10.67 x 10.67 x 2.54 cm)
. shipping weight: .50 lb. (.23 kg)

9.2.4 SSB-AO1
9.2.4.1 I/O
. One (1) Analog Output
. Selectable 0-10 VDC or 0-20 mA output range
9.2.4.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1 A (max)
9.2.4.3 DIMENSIONS
. size: 4.2 x 4.2 x 1.0 in. (10.67 x10.67 x2.54 cm)
. shipping weight: .50 lb. (.23 kg)
9-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O IOX MODULE SPECIFICATIONS
9.2.5 SSB-DI1
9.2.5.1 I/O
. One (1) Optically Isolated, Pulse Counting, Digital Input
9.2.5.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1 A (max)
9.2.5.3 DIMENSIONS
. size: 4.2 x 4.2 x 1.0 in. (10.67 x 10.67 x 2.54 cm)
. shipping weight: .50 lb. (.23 kg)

9.2.6 SSB-DO1
9.2.6.1 I/O
. One (1) Digital Output (relay)
9.2.6.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, .25 A (max)
9.2.6.3 DIMENSIONS
. size: 4.75 x 3.25 x 2.0 in. (12.07 x 8.26 x 5.08 cm)
. shipping weight: .50 lb. (.23 kg)

9.2.7 SSB-DO1-I
9.2.7.1 I/O
. One (1) Digital Output (relay)
. One (1) Digital Input (dry contact only, no pulse counting)
9.2.7.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, .25 A (max)
9.2.7.3 DIMENSIONS
. size: 4.75 x 3.25 x 2.0 in. (12.07 x 8.26 x 5.08 cm)
. shipping weight: .50 lb. (.23 kg)

9.2.8 SSB-DO2
9.2.8.1 I/O
. Two (2) Digital Outputs (relays)
9.2.8.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, .25 A (max)
9.2.8.3 DIMENSIONS
. size: 4.75 x 3.25 x 2.0 in. (12.07 x 8.26 x 5.08 cm)
. shipping weight: .56 lb. (.25 kg)

9.2.9 SSB-DO2-I
9.2.9.1 I/O
. Two (2) Digital Outputs (relays)
. Two (2) Digital Inputs (dry contacts only, no pulse counting)
9.2.9.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, .25 A (max)
9.2.9.3 DIMENSIONS
. size: 4.75 x 3.25 x 2.0 in. (12.07 x 8.26 x 5.08 cm)
. shipping weight: .56 lb. (.25 kg)
MatrixBBC Programmers Guide (10/5/2012) 9-5

IOX MODULE SPECIFICATIONS SECTION 9: EXPANSION I/O
9.2.10 SSB-IOX1-1
9.2.10.1 I/O
. Four (4) 24-bit Universal Inputs
. Selectable 0-5 VDC,0-10 VDC, 0-20 mA or 0-250 k input range
. One (1) Optically Isolated, Pulse Counting, Digital Input
. Two (2) Analog Outputs
. Selectable 0-10 VDC or 0-20 mA output range
. Two (2) Digital Outputs (triacs)
9.2.10.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1.85 A (max)
9.2.10.3 DIMENSIONS
. size: 5.75 x 6.35 x 1.05 in. (14.60 x 16.13 x 2.67 cm)
. shipping weight: .95 lb. (.42 kg)

9.2.11 SSB-IOX1-2
9.2.11.1 I/O
. Eight (8) 24-bit Universal Inputs
. Selectable 0-5 VDC, 0-20mA or -250 k input range.
9.2.11.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1.85 A (max)
9.2.11.3 DIMENSIONS
. size: 5.75 x 6.35 x 1.05 in. (14.60 x 16.13 x 2.67 cm)
. shipping weight: .95 lb. (.42 kg)

9.2.12 SSB-IOX2-1
9.2.12.1 I/O
. Twelve (12) 24-bit Universal Inputs
. Selectable 0-5 VDC,0-10 VDC, 0-20 mA or 0-250 k input range
. Six (6) Analog Outputs
. Selectable 0-10 VDC or 0-20 mA output range
. Six (6) Digital Outputs (triacs)
9.2.12.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1.85 A (max)
9.2.12.3 DIMENSIONS
. size: 8.407 x 6.5 x 1.25 in. (20.83x16.51x3.18 cm)
. shipping weight: 3 lb. (1.36 kg)

9.2.13 SSB-IOX2-2
9.2.13.1 I/O
. Twelve (12) 24-bit Universal Inputs
. Selectable 0-5 VDC,0-10 VDC, 0-20 mA or 0-250 k input range
9.2.13.2 POWER REQUIREMENTS
. 24VAC, 50/60 Hz, 1.85 A (max)
9.2.13.3 DIMENSIONS
. size: 8.407 x 6.5 x 1.25 in. (20.83x16.51x3.18 cm)
. shipping weight: 3 lb. (1.36 kg)
9-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O LENGTH OF THE NETWORK
9.3 LENGTH OF THE NETWORK
The distance measured from the controller to the STATbus device on the network located furthest away
from it should not exceed 1000' in length. The STATbus shown in Figure 9-1a is a valid configuration
because the distance from the controller to the most distant device is less than 1000’ whereas the
configuration shown in Figure 9-1b is not valid because the total length to the most distant device is 1150’,
exceeding the 1000’ maximum.

Figure 9-1 Determining Maximum STATbus Length

a)

b)
50'

150'

250' 350'

300'

200'

50'

150'

250' 350' 200'

200'

100'
MatrixBBC Programmers Guide (10/5/2012) 9-7

NUMBER OF DEVICES SECTION 9: EXPANSION I/O
9.4 NUMBER OF DEVICES
Each STATbus channel on the controller will support a maximum of thirteen (13) devices.

9.4.1 COMMUNICATIONS LIMITS
While the STATbus protocol allows up to thirteen devices to be connected to a single network, certain
devices reduce the maximum number of other devices that may be used on a single channel. In particular,
STAT1D, STAT2D, and STAT3 have a higher power requirement than other STATbus devices and limit the
total number of devices that can be put on the network and still communicate. When one or more STAT
devices are included on the network, the maximum number of devices allowed on the network will be
reduced.

9.4.1.1 NO STATS ON THE STATBUS
If your STATbus channel does not have any STATs (STAT1D, STAT2D, or STAT3) on it, then you may have
up to thirteen devices in any combination on the network. This may include SSB-FI1s, SSB-UI1s, SSB-
AO1s, SSB-DI1s, SSB-DO1s, SSB-DO1-Is, SSB-DO2s, SSB-DO2-Is, and SSB-IOX1 modules.

9.4.1.2 ONE OR MORE STATS ON THE STATBUS
If one or more STATs are being used, the total number of devices that can communicate on a single
STATbus channel will be reduced. Table 9-1 lists the number of additional STATbus devices that can be
connected for a given number of STATs.

9.4.1.3 EXAMPLE: NO STATS ON THE STATBUS
With no STATs on the Bus, you may use any combination of SSB devices, up to a maximum of thirteen
devices total. This means any of the following would be valid:

. 13 SSB-FI1s to read a number of different inputs

. 6 SSB-FI1s and 6 SSB-AO1s to provide simple damper control for six zones

CAUTION
A maximum of thirteen (13) devices can be
connected to a single STATbus channel. If more
than thirteen devices are connected, only thirteen
will be enumerated by the controller. If more than
thirteen devices are connected, there is no way to
predict which devices will be enumerated and
which will be left off.

Table 9-1 Number of Devices Allowed on a STATbus

Number of STATs
Number of other

STATbus Devices

1 11

2 9

3 7

4 5

5 2
9-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O NUMBER OF DEVICES
. 3 SSB-UI1s, 3 SSB-AO1s, and 3 SSB-DO1-Is, giving three zones with a zone temperature input, con-
trol for a damper and a reheat coil with supervisory monitoring

9.4.1.4 EXAMPLE: STATS ON THE STATBUS
For a STATbus design that contains STATs, you must refer to the Table 9-1 above to determine the number
of devices that can be used in addition to the STATs.

For a system with 4 STATs, for example, Table 9-1 indicates that up to five additional devices can be
connected to the bus. You could use four SSB-AO1s to create four zones with damper control.
MatrixBBC Programmers Guide (10/5/2012) 9-9

GID NUMBERS AND MAPPING IOX MODULES SECTION 9: EXPANSION I/O
9.5 GID NUMBERS AND MAPPING IOX MODULES

9.5.1 WRITING GIDS TO DEVICES
Every IOX module has a unique Global Identification (GID) which is identical to the unit’s serial number.
The GID number is the address that the controller will use to uniquely identify and communicate with the
module. The GID numbers are used during commissioning to map the remote I/O point(s) on the IOX
modules to inputs and/or outputs in the controller.

To prepare the controller to perform this mapping you must set the (CR) Configure Remote I/O property in
the STATBus Summary object to “Edit I/O GIDs” (CR=2). This allows you to manually assign the GID
numbers of remote I/O devices located on the STATbus to the inputs or outputs in the controller.

You must select an input or output in the controller and choose the device you wish to assign to it. You
must then enter the GID number of the chosen device in to the (GI) GID of I/O Device property for the
input or output. If the GID entered is valid, the GID number will be displayed, along with the type of device.

Once (GI) GID of I/O Device has been set, you must then configure the index number properties (I#)
Input Index of I/O Device for input objects, and (O#) Output Index for I/O Device for output objects. For
IOX modules that only contain a single I/O point, the index number shall be se to a value of 1. For IOX
modules that contain multiple points of data, you will need to set the index number according to the I/O
assignment. For example, if you wish to configure a Universal Input to focus on UI2 of an SSB-IOX, set the
index number to a value of 2. Each IOX module reviewed will include a table that provides a reference for
the index number that corresponds with each input or output.

Repeat this process of assigning GIDs for as many devices as you wish to configure.

Once all the devices you wish to configure have had their GIDs successfully assigned to an input or
output, you must set the (CR) Configure Remote I/O = 1. This will write the configuration information to
the devices on the STATbus network. The Configure Remote I/O setting will automatically return to
“Normal” (CR=0) once the write is complete, eliminating the possibility of accidentally overwriting STATbus
configuration information.

9.5.2 REMOVING GID ASSIGNMENTS
Once the GID of an IOX module has been mapped to a particular input or output, that mapping is stored
both in the controller and on the device itself. If you wish to remove a GID mapping, you can do so by
entering a value of 0 into the GI property or attribute for the input or output. Unmapping a module in this
way will only remove the assignment to that particular input or output and will not effect any other inputs or
outputs to which the module is mapped. If the module has multiple inputs or outputs, this will leave all other
mappings intact. This situation will cause communication problems between the controller and the module

NOTE
It is recommended that, at some point before or
during installation, you compile a list of all the
STATbus devices, their location or function, and
their GID numbers. This information will be needed
in the commissioning of the project and may be
difficult to obtain once the units are installed.
9-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O GID NUMBERS AND MAPPING IOX MODULES
that will result in the module behaving unpredictably. Additionally, I# and O# can be set to a value of 255
to un assigning the device.

NOTE
When unmapping the GID of a module with
multiple inputs and/or outputs, you must zero the
GID in all objects or channels to which it is
assigned.
MatrixBBC Programmers Guide (10/5/2012) 9-11

SSB-FI1 SECTION 9: EXPANSION I/O
9.6 SSB-FI1
9.6.1 FEATURES
The SSB-FI1, shown in Figure 9-2, is a STATbus device which provides a single remote Flexible Input, that
is installed at the sensor location - in all most cases, directly coupled with the sensor. A Flexible Input is a
lower resolution version of the Universal Input found on a device such as an NB-GPC controller. The
signal read by the SSB-FI1 is processed using a 12-bit analog-to-digital converter and, through digital
signal processing algorithms, extrapolated to a 16-bit reading.

The SSB-FI1 is an option for sensors which do not require excitation power or for inputs which do not
require the additional resolution provided by the SSB-UI1.

Figure 9-2: The SSB-FI1

The input on the SSB-FI1 can be configured to read a 0-10 V, 0-5 V, 0-20 mA or 0-250 k signal using
jumpers located on the device. Any of the jumper configurations can also be interpreted by the controller
as a digital value by setting the sensor type to digital (ST=0). When being interpreted as a digital signal, a
reading of 0-25% of full scale corresponds to a zero state and a reading of 26-100% of full scale
corresponds to a one state.

9.6.2 WIRING/CONFIGURATION
9.6.2.1 IVR JUMPER
Before installing the SSB-FI1, you must configure the SSB-FI1 for the type of sensor connected to it,
connect the sensor to be used, and connect the SSB-FI1 to the STATbus network. The jumpers used to
determine the type of sensor connected to the SSB-FI1 are shown in Figure 9-3.

CAUTION
The design of the SSB-FI1 is intended for
installation scenarios where the FI1 module will be
mounted directly against or near the sensor. This
device is not intended for scenarios where it is
mounted in an enclosure panel with sensor wire
“home-runned” similar to a physical input. If you
wish to perform this type of applicaiton, you must
use an SSB-UI1. Failure to follow this guideline
can result in poor STATbus network
communicaitons.

cc
Tested to Comply with FCC Standards

For Home or Office Use

UL

LISTED

PAZX

80M7
PATENT PENDING

SSB-FI1

STATUS
9-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-FI1
Figure 9-3: Location of the Input Select Jumpers

Once the type of sensor that will be connected to the SSB-FI1 has been determined, the jumpers should
be moved to the positions appropriate for that type. The jumper settings for a 0-10 V, 0-5 V, 0-20 mA and 0-
250 k resistive inputs are given in Figure 9-4a-d respectively. The jumper configurations are also printed
on the SSB-FI1 enclosure adjacent to the jumpers.

Figure 9-4: Jumper Settings for the SSB-FI1

9.6.2.2 INPUT WIRING
The SSB-FI1 is ideal for any sensor which does not require power. A voltage sensor (0-10 V or 0-5V),
current sensor (0-20 mA or 4-20 mA), or resistance sensor would all be wired to the SSB-FI1 by
connecting the common wire to the COM terminal and the signal wire to the IN terminal as shown in Figure
9-5.

ELECTRICAL RATINGS:

Power Inputs:

Class 2, 12VDC 50 MA maximum

Signal Inputs:

Class 2, 12 VDC maximum

ENVIRONMENT RATINGS:

Temperature:

0° to 50° C

Humidity:

0° to 95% non-condensing

Use Copper

Conductors Only

CAUTION:

Term block torque 3"

pounds maximum

 COM

IN

E

S

S

0-10v 0-5v 0-20ma Res.

(a)

(b)

(c)

(d)

0-10V

0-5V 0-250 kΩ

0-20mA
MatrixBBC Programmers Guide (10/5/2012) 9-13

SSB-FI1 SECTION 9: EXPANSION I/O
Figure 9-5: Wiring an Input to the SSB-FI1

9.6.2.3 POSITION POTENTIOMETER
The SSB-FI1 can also be used to read information from a position potentiometer. For this type of sensor,
the jumpers must be set so that the SSB-FI1 is configured as a voltage input (either 0-5 V or 0-10 V). One
side of the resistor should be connected to the COM terminal and the other side to the E terminal. The
wiper, providing the position information, is connected to the IN terminal as shown in Figure 9-6.

Figure 9-6:Wiring a Position Potentiometer to the SSB-FI1

Once the sensor is connected to the SSB-FI1, it must be added to the STATbus network. Connect the pair
of wires coming from the last STATbus device to the two-pin terminal block labelled SS on the SSB-FI1.
The STATbus network is non-polar, so you do not need to worry about maintaining polarity between
devices.

NOTE
The COM terminal on the SSB-FI1 is not an
electrical ground. The SSB-FI1 will only function
properly when connected to isolated, non-
grounded sensors.

0-5 V,

0-10 V,

0-20 mA,

or

0-250 kΩ
Sensor

COM

IN

E

Position Potentiometer

COM

IN

E

9-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-FI1
9.6.3 MOUNTING THE SSB-FI1
The SSB-FI1 is designed to be mounted inside a standard 2x4 junction box as shown in Figure 9-7. The
SSB-FI1 is mounted in the junction box by attaching a screw to the junction box, through the mounting
hole, securing the SSB-FI1. The SSB-FI1 should be mounted such that the terminal blocks face the inside
of the junction box. When the SSB-FI1 is correctly installed, the GID number printed on the label should be
clearly visible.

Figure 9-7: Mounting the SSB-FI1

9.6.4 STATUS INDICATOR LED
The SSB-FI1 has a status indicator LED which provides feedback as to the device’s current operational
status. The status indicator LED is located on the front of the SSB-FI1 (the side that faces out when
installed) as shown in Figure 9-8. This allows status diagnostics to be performed without having to remove
the SSB-FI1 or disconnect it from the STATbus.

NOTE
All connections should be made to the SSB-FI1
before it is mounted. Before final mounting, make
sure that all wires are securely seated in the
terminal block plugs and the that the terminal block
plugs are firmly inserted in the correct socket.

8
0
M
7

P
A
T
EN
T

P
E
N
D
I
N
G

S
S
B
-
F
I
1

S
T
AT
U
S

U R

O
P
E
N

E
N
E
R
G
Y

M
A
N
AG
E
M
E
N
T

E
Q
U
I
P
M
E
N
T

T
h
i
s

d
e
v
i
c
e

c
o
m
p
l
i
e

s

w
i
t
h

P
a
r

t

1
5

o
f

t
h
e

F
C
C

R
u
l
e
s
.

O
p
e
r
a
t
i
o
n

o
f

t
h
i
s

e
q
u
i
p
m
e
n
t

i
s

s
u
b
j
e
c
t

t
o

t
h
e

f
o
l
l
o
w
i
n
g

t
w
o

c
o
n
d
i
t
i
o
n
s
:

1
)

T
h
i
s

d
e
v
i
c
e

m
a
y

n
o
t

c
a

u
s
e

h
a
r
m
f
u
l

i
n
t
e
r
f
e
r

e
n
c
e
,

a
n
d

2
)

T
h
i
s

d
e
v
i
c
e

m
u
s

t

a
c
c
e
p
t

a
n
y

i
n
t
e
r
f
e
r

e
n
c
e

r
e
c
e
i
v
e
d
,

i
n
c
l
u
d
i
n
g

i
n
t
e
r
f
e
r

e
n
c
e

t
h
a
t

m
a
y

c
a
u
s
e

u
n
d
e
s
i
r
e
d

o
p
e
r
a
t
i
o
n

.

MatrixBBC Programmers Guide (10/5/2012) 9-15

SSB-FI1 SECTION 9: EXPANSION I/O
Figure 9-8: Location of the Status Indicator LED on the SSB-FI1

The status indicator LED shows one of four different states: powered but not enumerated, enumerated but
not configured, configured, and “identify”. The different states are indicated by the rate at which the LED
blinks. The LED blinking quickly, approximately three to four times per second, indicates that the unit is
powered but has not yet been enumerated by the controller. This is useful for identifying units that are
correctly wired but not configured. When the device is enumerated but not configured, the blink rate will
slow to approximately twice a second.

Once the device has been configured, the blink rate will slow down to approximately one blink per second.
This will be the normal state of the device when it is correctly wired, powered, enumerated, and configured
in the controller.

When the controller is set to “Identify” in the Configure Function and Configure Device properties, the LED
on the SSB-FI1 will be blink three times in quick succession and then pause before repeating the three
blinks again. This is especially useful for quickly identifying an individual device in the field when
troubleshooting the STATbus.

9.6.5 SSB-FI CONFIGURATION TABLE

Table 9-2: SSB-FI Configuration Table

I/O Quantity (I#) Index Number

1 Universal Input 1

cc
Tested to Comply with FCC Standards

For Home or Office Use

PAZX

80M7
PATENT PENDING

SSB-FI1

STATUS

U
R

GID / S.N.
BAR CODE
DM

STATUS
9-16 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-UI1
9.7 SSB-UI1
9.7.1 FEATURES
The SSB-UI1, shown in Figure 9-9, is a STATbus device which provides a single remote universal input.
The input the SSB-UI1 provides is a true 24-bit universal input with more robust signal processing
electronics than the SSB-FI1. The SSB-UI1 should be used when using an input which requires excitation
power. The SSB-FI1, while capable of reading the signal from such devices, albeit at a lower resolution, is
not capable of providing excitation power, so it is not a viable choice when dealing with sensors of this
kind.

Figure 9-9: The SSB-UI1

9.7.2 WIRING/CONFIGURATION
Connecting a sensor to the SSB-UI1 requires two steps, connecting the wires from the sensor to the SSB-
UI1 and configuring the IVR jumper.

Connections are made to the SSB-UI1 via the terminal blocks, located on the side of the unit which faces
into the junction box, as shown in Figure 9-10. There are two sets of terminal blocks, the first is for
connection to the STATbus network and power and the second is for the connection of the sensor to the
SSB-UI1.

ELECTRICAL RATTINGS:
Power Inputs: Class 2
 24VAC 50/60 Hz Nominal .65A maximum
 .2A PTC Protection
Power Outputs: Class 2
 24 VDC OUT .065A maximum
 .065A PTC Protection
Signal Inputs/Outputs: Class 2
 30 VDC maximum
Communication Signals: Class 2
 SSB, 12VDC 50mA maximum
ENVIRONMENT RATINGS:
Temperature:
 0° to 50° C

Humidity:
 0 to 80% RH non-condensing
Use Copper Conductors Only
Caution:
Terminal Block Torque
3 Inch-pounds maximum

For Instructions See
Reference Manual No. IE-04-00-0126

Caution: Improper wiring will cause damage. Refer to Manual

IO PROCESSOR

MAIN POWER

PRODUCT DESIGNATION:

SSB-UI1

SSB-AO1

SSB-DI1

JUMPER CONFIGURATION

[TYPICAL UI]

 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω

I V R

V: 0-10VDC

 I: 0-20mA

JUMPER CONFIGURATION

[TYPICAL FOR AO]

V I

80M7, OPEN ENERGY
MANAGEMENT EQUIPMENT

U
R

(0579b) PATENT PENDING

This device complies with Part 15 of the FCC Rules.

Operation of this equipment is subject to the following

two conditions: 1) This device may not cause harmful

interference, and 2) This device must accept any

interference received, including interference that may

cause undesired operation.
MatrixBBC Programmers Guide (10/5/2012) 9-17

SSB-UI1 SECTION 9: EXPANSION I/O
Figure 9-10: SSB-UI1 Terminal Block Locations

9.7.2.1 IVR JUMPER
The SSB-UI1 has an IVR jumper, identical in function to the ones found on the NB-GPC, which is used to
select the type of input connected to the module. The SSB-UI1 can be configured to read a 0-20 mA, 0-10
V or a 0-250 k sensor. The jumper settings corresponding to these options are shown in Figure 9-11a-c
respectively.

STATbus and Power

IVR Jumper

Input Terminal

PTC2PTC2

JP1JP1

TB1TB1

C2K
C2K

D10
D10

C4H
C4H

C4EC4E

U7U7

R4A
R4A

C4AC4A

D18D18

R4B
R4B

R4H
R4H

R4G
R4G

C4G
C4G

R4F
R4FR5CR5C

C2PC2P

C4DC4D

C4CC4C

C4BC4B

U6U6

R5GR5G

U8U8

PTC1
PTC1

C1FC1F

C2FC2F

C3BC3B

C2RC2R

D1D1

D4D4

D19D19 U13U13 U12U12

R5KR5K

C2HC2H

C2LC2L

R2BR2B

R2CR2C

C2JC2J

R2DR2D

R2ER2E

R2FR2F

U2U2

C2GC2G

C2BC2B

C2CC2C

C2DC2D

C2EC2E

C2M
C2M

T2T2

C1QC1Q

R1KR1K

R1MR1M

C1RC1R

R1LR1L

I1I1

U3U3

C2S
C2S

L2L2

R2A
R2A

C2A
C2A

C1NC1NC1PC1P

D8D8

C1X
C1X

C1Y
C1Y

C1H
C1H

C1Z
C1Z

C1L
C1L

R1C
R1C

R1B
R1B

R1F
R1F

C1G
C1G T1T1

D3D3

D7D7

D6D6

D2D2D5D5

Q2Q2 D23D23

C1EC1E

C1DC1D

C1AC1A

C1BC1B

C1CC1C

R1AR1A L1L1

Q1Q1 D9D9

R1JR1J

C1MC1M

R1GR1G

R1HR1HR1E
R1E

R1D
R1D

U1U1

C1SC1S

RS1
RS1C3A

C3A

D12D12D13D13Q5Q5

D14D14

R3G
R3G

R3F
R3F

D15D15

D11D11

R3DR3D

R3CR3C

R3BR3B

R3AR3A

R3E
R3E

I4I4

U5U5
I3I3

R4C
R4C

R5F
R5F

R5LR5L

C3CC3C

R5ER5E

C2Q
C2QU4U4

U11U11

D20
D20

R6K
R6K

C5B
C5B

R5H
R5H

R5JR5J

C5AC5A

C5C
C5C

U9U9

U10U10

TB4TB4

S

S

B

S

S

B

X

1

X

2

JP1JP1

TB1TB1

TB4TB4

S

S

B

S

S

B

X

1

X

2

0000
9-18 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-UI1
Figure 9-11: SSB-UI1 IVR Jumper Positions

9.7.2.2 RESISTIVE INPUTS
A resistive input, such as a thermistor, would be connected as shown in Figure 9-12. One side of the input
should be connected to the UI terminal and the other to the COM terminal. Since a thermistor is a resistive
input, the IVR jumper should be set to the “R” position.

Figure 9-12: Wiring a Resistive Input to the SSB-UI1

9.7.2.3 VOLTAGE INPUTS
The connections needed to use a voltage sensor with the SSB-UI1 are shown in Figure 9-13. The signal
wire from the sensor should be connected to the UI terminal, the power connection should be connected to

(c) 0-250 kΩ

(b) 0-10 VDC Voltage

(a) 0-20 mA Current

TB1

V

E

UI

COM

Device
MatrixBBC Programmers Guide (10/5/2012) 9-19

SSB-UI1 SECTION 9: EXPANSION I/O
the V terminal and the common wire should be connected to the COM, terminal V terminal provides
24VDC output. The IVR jumper should be set to the “V” position when using this type of input.

Figure 9-13: Wiring a Voltage Input to the SSB-UI1

9.7.2.4 CURRENT INPUTS
When using a current sensor with the SSB-UI1, the sensor would be connected as shown in Figure 9-14.
The + and - terminals of the sensor should be connected to the V and UI terminals on the SSB-UI1
respectively. When using 3-wire current sensors, the COM terminal on the sensor should be connected to
the COM terminal on the SSB-UI1. Regardless of which type of current sensor you are using, the IVR
jumper should be set to the “I” position.

Figure 9-14: Wiring a Current Input to the SSB-UI1

PWR+

SIG OUT

COM

TB1

V

E

UI

COM

+

-

COM

TB1

V

E

UI

COM

Device
(Sensor)

4-20mA

Used with 3-wire

current sensors
9-20 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-UI1
9.7.2.5 POSITION POTENTIOMETER
The SSB-UI1 can be configured to read the signal from a position potentiometer as shown in Figure 9-15.
For this type of sensor, the one side of the resistor should be connected to the COM terminal, the other
side should be connected to the E terminal, and the wiper, providing the position information, should be
connected to the UI terminal. When using this type of sensor, the IVR jumper should be set to the “V”
position.

Figure 9-15: Wiring a Position Potentiometer to the SSB-UI1

9.7.3 MOUNTING THE SSB-UI1
The SSB-UI1 has the same footprint as, and is designed to be mounted on top of, a standard 4x4 junction
box, replacing the junction box’s cover plate.

Before mounting the SSB-UI1 to the junction box, verify all wiring is correct, making sure that all screw
terminals are sufficiently tightened and all terminal blocks are securely seated.

With the wires attached to the device, loosen the screws on the 4x4 junction box slightly. The screws
should be loose enough to provide room to slide the SSB-UI1 onto the screws, but not so loose that they
can fall out. Align the channels on the back corners of the SSB-UI1 with the screws on the junction box and
slide the unit downward onto the screws as shown in Figure 9-16. Tighten the screws through the holes in
the front of the SSB-UI1 to secure the device to the junction box.

TB1

V

E

UI

COM
MatrixBBC Programmers Guide (10/5/2012) 9-21

SSB-UI1 SECTION 9: EXPANSION I/O
Figure 9-16: Mounting the SSB-UI1 to a 4x4 junction box

9.7.4 STATUS INDICATOR LED
The SSB-UI1 has an IO Processor indicator LED which provides feedback as to the device’s current
operational status. The IO Processor indicator LED is located on the front of the SSB-UI1 (the side that
faces out when installed) as shown in Figure 9-17. This allows status diagnostics to be performed without
having to remove the SSB-UI1.

SSB-UI1

SSB-AO1

SSB-DI1

IO PROCESSOR

MAIN POWER

LISTED PAZX 80M7, OPEN
ENERGY MANAGEMENT EQUIPMENTcc

Tested to Comply with FCC Standards

For Home or Office Use

LISTED

UL

PRODUCT DESIGNATION:

V: 0-10VDC

 I: 0-20mA

V I

JUMPER CONFIGURATION

[TYPICAL FOR AO]

JUMPER CONFIGURATION

[TYPICAL UI]

I V R
 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω
9-22 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-UI1
Figure 9-17: Location of the IO Processor Indicator LED on the SSB-UI1

The status indicator LED shows one of four different states: powered but not enumerated, enumerated but
not configured, configured, and “identify”. The different states are indicated by the rate at which the LED
blinks. The LED blinking quickly, approximately three to four times per second, indicates that the unit is
powered but has not yet been enumerated by the controller. This is useful for identifying units that are
correctly wired but not configured. When the device is enumerated but not configured, the blink rate will
slow to approximately twice a second.

Once the device has been configured, the blink rate will slow down to approximately one blink per second.
This will be the normal state of the device when it is correctly wired, powered, enumerated, and configured
in the controller.

When the controller is set to “Identify” in the Configure Function and Configure Device properties, the LED
on the SSB-UI1 will be blink three times in quick succession and then pause before repeating the three
blinks again. This is especially useful for quickly identifying an individual device in the field when
troubleshooting the STATbus.

9.7.5 SSB-UI CONFIGURATION TABLE

Table 9-3: SSB-UI Configuration Table

I/O Quantity (I#) Index Number

1 Universal Input 1

ELECTRICAL RATTINGS:
Power Inputs: Class 2
 24VAC 50/60 Hz Nominal .65A maximum
 .2A PTC Protection
Power Outputs: Class 2
 24 VDC OUT .065A maximum
 .065A PTC Protection
Signal Inputs/Outputs: Class 2
 30 VDC maximum
Communication Signals: Class 2
 SSB, 12VDC 50mA maximum
ENVIRONMENT RATINGS:
Temperature:
 0° to 50° C

Humidity:
 0 to 80% RH non-condensing
Use Copper Conductors Only
Caution:
Terminal Block Torque
3 Inch-pounds maximum

For Instructions See
Reference Manual No. IE-04-00-0126

Caution: Improper wiring will cause damage. Refer to Manual

IO PROCESSOR

MAIN POWER

PRODUCT DESIGNATION:

SSB-UI1

SSB-AO1

SSB-DI1

JUMPER CONFIGURATION

[TYPICAL UI]

 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω

I V R

V: 0-10VDC

 I: 0-20mA

JUMPER CONFIGURATION

[TYPICAL FOR AO]

V I

80M7, OPEN ENERGY
MANAGEMENT EQUIPMENT

U
R

(0579b) PATENT PENDING

This device complies with Part 15 of the FCC Rules.

Operation of this equipment is subject to the following

two conditions: 1) This device may not cause harmful

interference, and 2) This device must accept any

interference received, including interference that may

cause undesired operation.

IO PROCESSOR
MatrixBBC Programmers Guide (10/5/2012) 9-23

SSB-AO1 SECTION 9: EXPANSION I/O
9.8 SSB-AO1
9.8.1 FEATURES
The SSB-AO1, shown in Figure 9-18, is a STATbus device which provides a single remote analog output
to the MatrixBBC. This output can be configured as either a 0-10 VDC or 0-20 mA output via a user-
selectable jumper.

Figure 9-18: The SSB-AO1

9.8.2 WIRING/CONFIGURATION
Connections are made to the SSB-AO1 via the terminal blocks shown in Figure 9-19. The terminal blocks
are located on the side of the unit which faces the junction box. There are two terminal blocks, the first is
for connections to the STATbus network and power and the second is for the connection to the output
device.

ELECTRICAL RATTINGS:
Power Inputs: Class 2
 24VAC 50/60 Hz Nominal .65A maximum
 .2A PTC Protection
Power Outputs: Class 2
 24 VDC OUT .065A maximum
 .065A PTC Protection
Signal Inputs/Outputs: Class 2
 30 VDC maximum
Communication Signals: Class 2
 SSB, 12VDC 50mA maximum
ENVIRONMENT RATINGS:
Temperature:
 0° to 50° C

Humidity:
 0 to 80% RH non-condensing
Use Copper Conductors Only
Caution:
Terminal Block Torque
3 Inch-pounds maximum

For Instructions See
Reference Manual No. IE-04-00-0126

Caution: Improper wiring will cause damage. Refer to Manual

IO PROCESSOR

MAIN POWER

PRODUCT DESIGNATION:

SSB-UI1

SSB-AO1

SSB-DI1

JUMPER CONFIGURATION

[TYPICAL UI]

 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω

I V R

V: 0-10VDC

 I: 0-20mA

JUMPER CONFIGURATION

[TYPICAL FOR AO]

V I

80M7, OPEN ENERGY
MANAGEMENT EQUIPMENT

U
R

(0579b) PATENT PENDING

This device complies with Part 15 of the FCC Rules.

Operation of this equipment is subject to the following

two conditions: 1) This device may not cause harmful

interference, and 2) This device must accept any

interference received, including interference that may

cause undesired operation.
9-24 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-AO1
Figure 9-19:SSB-AO1 Terminal Block Locations

PTC2PTC2

JP2JP2

TB1TB1

C2K
C2K

D10
D10

C4H
C4H

C4EC4E

U7U7

R4JR4J

RP1RP1

D21
D21

RP2RP2

C4F
C4F

R4D
R4D

R4E
R4E

PTC1
PTC1

C1FC1F

C2FC2F

C3BC3B

C2RC2R

D1D1

D4D4

D19D19 U13U13 U12U12

R5KR5K

C2HC2H

C2LC2L

R2BR2B

R2CR2C

C2JC2J

R2DR2D

R2ER2E

R2FR2F

U2U2

C2GC2G

C2BC2B

C2CC2C

C2DC2D

C2EC2E

C2M
C2M

T2T2

C1QC1Q

R1KR1K

R1MR1M

C1RC1R

R1LR1L

I1I1

U3U3

C2S
C2S

L2L2

R2A
R2A

C2A
C2A

C1NC1NC1PC1P

D8D8

C1X
C1X

C1Y
C1Y

C1H
C1H

C1Z
C1Z

C1L
C1L

R1C
R1C

R1B
R1B

R1F
R1F

C1G
C1G T1T1

D3D3

D7D7

D6D6

D2D2D5D5

Q2Q2 D23D23

C1EC1E

C1DC1D

C1AC1A

C1BC1B

C1CC1C

R1AR1A L1L1

Q1Q1 D9D9

R1JR1J

C1MC1M

R1GR1G

R1HR1HR1E
R1E

R1D
R1D

U1U1

C1SC1S

RS1
RS1C3A

C3A

D12D12D13D13Q5Q5

D14D14

R3G
R3G

R3F
R3F

D15D15

D11D11

R3DR3D

R3CR3C

R3BR3B

R3AR3A

R3E
R3E

I4I4

U5U5
I3I3

R4C
R4C

R5F
R5F

R5LR5L

C3CC3C

R5ER5E

C2Q
C2QU4U4

U11U11

D20
D20

R6K
R6K

C5B
C5B

R5H
R5H

R5JR5J

C5AC5A

C5C
C5C

U9U9

U10U10

TB4TB4

S

S

B

S

S

B

X

1

X

2

0101

TB1TB1

TB4TB4

S

S

B

S

S

B

X

1

X

2

STATbus

and Power

VI Jumper

Input Terminal
MatrixBBC Programmers Guide (10/5/2012) 9-25

SSB-AO1 SECTION 9: EXPANSION I/O
Each SSB-AO1 has a VI jumper identical to the ones found on the NB-GPC. This is used to select the
output range of the SSB-AO1. The output can be configured for 0-10 VDC or 0-20 mA operation, using the
jumper positions shown in Figure 9-20a and b respectively.

Figure 9-20: SSB-AO1 VI Jumper Positions

9.8.2.1 OUTPUT WIRING
When using devices which do not require power, either because they do not require a power supply or
because they have a dedicated external power supply, the SSB-AO1 is wired as shown in Figure 9-21.
The signal wire should be connected to the AO terminal on the SSB-AO1 and the common wire should be
connected to the COM terminal. For a 0-10 V device, the VI jumper should be set to the “V” position. If the
device operated on a 0-20 mA signal, you would instead set the VI jumper to the “I” position.

Figure 9-21: Wiring the SSB-AO1 to a Device That Does Not Require Power

(a)

(b)

0-10V DC Voltage

0-20 mA Current

TB1

V

AO

COM

+

Y

COM

24 VDC Device
(Modulating) 4-20mA Signal
9-26 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-AO1
9.8.2.2 POWERED DEVICES
When the output device requires power, the SSB-AO1 would be connected as shown in Figure 9-22. The +
or power wire from the sensor should be connected to the V terminal on the SSB-AO1. The Y wire should
be connected to the AO terminal and the common wire should be connected to the COM terminal. For a 0-
10 V device, the VI jumper should be set to the “V” position. If the device operated on a 0-20 mA signal,
you would instead set the VI jumper to the “I” position.

Figure 9-22: Wiring the SSB-AO1 to a Device That Requires Power

9.8.3 MOUNTING THE SSB-AO1
The SSB-AO1 is designed to be mounted on top of, a standard 4x4 junction box, replacing the junction
box’s cover plate.

Before mounting the SSB-AO1 to the junction box, verify all wiring is correct, making sure that all screw
terminals are sufficiently tightened and all terminal blocks are securely seated.

With the wires attached to the device, loosen the screws on the 4x4 junction box slightly. The screws
should be loose enough to provide room to slide the SSB-AO1 onto the screws, but not so loose that they
can fall out. Align the channels on the back corners of the SSB-AO1 with the screws on the junction box
and slide the unit downward onto the screws as shown in Figure 9-23. Tighten the screws through the
holes in the front of the SSB-AO1 to secure the device to the junction box.

TB1

SIG

COM

V

AO

COM

24 VAC Device
(Modulating) 4-20mA Signal

120/24 VAC
MatrixBBC Programmers Guide (10/5/2012) 9-27

SSB-AO1 SECTION 9: EXPANSION I/O
Figure 9-23: Mounting the SSB-AO1 to a 4x4 junction box

9.8.4 STATUS INDICATOR LED
The SSB-AO1 has an IO Processor indicator LED which provides feedback as to the device’s current
operational status. The IO Processor indicator LED is located on the front of the SSB-AO1 (the side that
faces out when installed) as shown in Figure 9-24. This allows status diagnostics to be performed without
having to remove the SSB-AO1.

SSB-UI1

SSB-AO1

SSB-DI1

IO PROCESSOR

MAIN POWER

LISTED PAZX 80M7, OPEN
ENERGY MANAGEMENT EQUIPMENTcc

Tested to Comply with FCC Standards

For Home or Office Use

LISTED

UL

PRODUCT DESIGNATION:

V: 0-10VDC

 I: 0-20mA

V I

JUMPER CONFIGURATION

[TYPICAL FOR AO]

JUMPER CONFIGURATION

[TYPICAL UI]

I V R
 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω
9-28 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-AO1
Figure 9-24: Location of the IO Processor Indicator LED on the SSB-AO1

The status indicator LED shows one of four different states: powered but not enumerated, enumerated but
not configured, configured, and “identify”. The different states are indicated by the rate at which the LED
blinks. The LED blinking quickly, approximately three to four times per second, indicates that the unit is
powered but has not yet been enumerated by the controller.

Once the device has been enumerated, the blink rate will slow down to approximately one blink per
second. This will be the normal state of the device when it is correctly wired, powered, enumerated, and
configured in the controller.

When the controller is set to “Identify” in the Configure Function and Configure Device properties, the LED
on the SSB-AO1 will be blink three times in quick succession and then pause before repeating the three
blinks again. This is especially useful for quickly identifying an individual device in the field when
troubleshooting the STATbus.

9.8.5 SSB-AO CONFIGURATION TABLE

Table 9-4: SSB-FI Configuration Table

I/O Quantity (O#) Index Number

1 Analog Output 1

ELECTRICAL RATTINGS:
Power Inputs: Class 2
 24VAC 50/60 Hz Nominal .65A maximum
 .2A PTC Protection
Power Outputs: Class 2
 24 VDC OUT .065A maximum
 .065A PTC Protection
Signal Inputs/Outputs: Class 2
 30 VDC maximum
Communication Signals: Class 2
 SSB, 12VDC 50mA maximum
ENVIRONMENT RATINGS:
Temperature:
 0° to 50° C

Humidity:
 0 to 80% RH non-condensing
Use Copper Conductors Only
Caution:
Terminal Block Torque
3 Inch-pounds maximum

For Instructions See
Reference Manual No. IE-04-00-0126

Caution: Improper wiring will cause damage. Refer to Manual

IO PROCESSOR

MAIN POWER

PRODUCT DESIGNATION:

SSB-UI1

SSB-AO1

SSB-DI1

JUMPER CONFIGURATION

[TYPICAL UI]

 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω

I V R

V: 0-10VDC

 I: 0-20mA

JUMPER CONFIGURATION

[TYPICAL FOR AO]

V I

80M7, OPEN ENERGY
MANAGEMENT EQUIPMENT

U
R

(0579b) PATENT PENDING

This device complies with Part 15 of the FCC Rules.

Operation of this equipment is subject to the following

two conditions: 1) This device may not cause harmful

interference, and 2) This device must accept any

interference received, including interference that may

cause undesired operation.

IO PROCESSOR
MatrixBBC Programmers Guide (10/5/2012) 9-29

SSB-DI1 SECTION 9: EXPANSION I/O
9.9 SSB-DI1
9.9.1 FEATURES
The SSB-DI1, shown in Figure 9-25, is a STATbus module which provides a single remote digital input to
the MatrixBBC. This input is a wet contact that is capable of pulse counting.

Figure 9-25: The SSB-DI1

9.9.2 WIRING/CONFIGURATION
Connections are made to the SSB-DI1 via the terminal blocks shown in Figure 9-26. The terminal blocks
are located on the side of the unit which faces the junction box. There are two blocks, the first for
connections to the STATbus network and power, and the second for the connection to the input device.

ELECTRICAL RATTINGS:
Power Inputs: Class 2
 24VAC 50/60 Hz Nominal .65A maximum
 .2A PTC Protection
Power Outputs: Class 2
 24 VDC OUT .065A maximum
 .065A PTC Protection
Signal Inputs/Outputs: Class 2
 30 VDC maximum
Communication Signals: Class 2
 SSB, 12VDC 50mA maximum
ENVIRONMENT RATINGS:
Temperature:
 0° to 50° C

Humidity:
 0 to 80% RH non-condensing
Use Copper Conductors Only
Caution:
Terminal Block Torque
3 Inch-pounds maximum

For Instructions See
Reference Manual No. IE-04-00-0126

Caution: Improper wiring will cause damage. Refer to Manual

IO PROCESSOR

MAIN POWER

PRODUCT DESIGNATION:

SSB-UI1

SSB-AO1

SSB-DI1

JUMPER CONFIGURATION

[TYPICAL UI]

 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω

I V R

V: 0-10VDC

 I: 0-20mA

JUMPER CONFIGURATION

[TYPICAL FOR AO]

V I

80M7, OPEN ENERGY
MANAGEMENT EQUIPMENT

U
R

(0579b) PATENT PENDING

This device complies with Part 15 of the FCC Rules.

Operation of this equipment is subject to the following

two conditions: 1) This device may not cause harmful

interference, and 2) This device must accept any

interference received, including interference that may

cause undesired operation.
9-30 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DI1
Figure 9-26:SSB-DI1 Terminal Block Locations

When the SSB-DI1 is configured to operate with an internally powered input, it would be wired as shown in
Figure 9-27. The two wires from the input should be connected to the to PI terminals on the SSB-DI1.

Figure 9-27: Wiring the SSB-DI1 for use with an Internally Powered Input

STATbus and Power Input Terminal

R7AR7A R7BR7B

D16D16

D17D17

I2I2

R7CR7C

PTC1
PTC1

C1FC1F

C2FC2F

C3BC3B

C2RC2R

D1D1

D4D4

D19D19 U13U13 U12U12

R5KR5K

C2HC2H

C2LC2L

R2BR2B

R2CR2C

C2JC2J

R2DR2D

R2ER2E

R2FR2F

U2U2

C2GC2G

C2BC2B

C2CC2C

C2DC2D

C2EC2E

C2M
C2M

T2T2

C1QC1Q

R1KR1K

R1MR1M

C1RC1R

R1LR1L

I1I1

U3U3

C2S
C2S

L2L2

R2A
R2A

C2A
C2A

C1NC1NC1PC1P

D8D8

C1X
C1X

C1Y
C1Y

C1H
C1H

C1Z
C1Z

C1L
C1L

R1C
R1C

R1B
R1B

R1F
R1F

C1G
C1G T1T1

D3D3

D7D7

D6D6

D2D2D5D5

Q2Q2 D23D23

C1EC1E

C1DC1D

C1AC1A

C1BC1B

C1CC1C

R1AR1A L1L1

Q1Q1 D9D9

R1JR1J

C1MC1M

R1GR1G

R1HR1HR1E
R1E

R1D
R1D

U1U1

C1SC1S

RS1
RS1C3A

C3A

D12D12D13D13Q5Q5

D14D14

R3G
R3G

R3F
R3F

D15D15

D11D11

R3DR3D

R3CR3C

R3BR3B

R3AR3A

R3E
R3E

I4I4

U5U5
I3I3

R4C
R4C

R5F
R5F

R5LR5L

C3CC3C

R5ER5E

C2Q
C2QU4U4

U11U11

D20
D20

R6K
R6K

C5B
C5B

R5H
R5H

R5JR5J

C5AC5A

C5C
C5C

U9U9

U10U10

TB4TB4

S

S

B

S

S

B

X

1

X

2

TB3TB3

P
I

P
I

0202

TB4TB4

S

S

B

S

S

B

X

1

X

2

TB3TB3

P
I

P
I

TB3 Device

PI

PI

Internal

Device

Power

3-29 V AC/DC
MatrixBBC Programmers Guide (10/5/2012) 9-31

SSB-DI1 SECTION 9: EXPANSION I/O
If the SSB-DI1 is to be used with a externally powered input, the wiring must include a source of power for
the input device. As shown in Figure 9-28, the X1 and X2 terminals are connected to one of side of the
sensor and one of the PI terminal. The other side of the sensor is wired to the remaining PI terminal.

Figure 9-28: Wiring the SSB-DI1 for use with an Externally Powered Input

9.9.3 MOUNTING THE SSB-DI1
The SSB-DI1 has the same footprint and is designed to be mounted on top of a standard 4x4 junction box,
replacing the junction box’s cover plate.

Before mounting the SSB-DI1 to the junction box, verify all wiring is correct, making sure that all screw
terminals are sufficiently tightened and all terminal blocks are securely seated.

WIth the wires attached to the device, loosen the screws on the 4x4 junction box slightly. The screws
should be loose enough to provide room to slide the SSB-DI1 onto the screws, but not so loose that they
can fall out. Align the channels on the back corners of the SSB-DI1 with the screws on the junction box
and slide the unit downward onto the screws as shown in Figure 9-29. Tighten the screws through the
holes in the front of the SSB-DI1 to secure the device to the junction box.

TB3

PI

PI

Sensor

SSB

SSB

X1

X2

To GPC
9-32 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DI1
Figure 9-29: Mounting the SSB-DI1 to a 4x4 junction box

9.9.4 STATUS INDICATOR LED
The SSB-DI1 has an IO Processor indicator LED which provides feedback as to the device’s current
operational status. The IO Processor indicator LED is located on the front of the SSB-DI1 (the side that
faces out when installed) as shown in Figure 9-30. This allows status diagnostics to be performed without
having to remove the SSB-DI1.

9.9.5 SSB-DI1 CONFIGURATION TABLE

Table 9-5: SSB-FI Configuration Table

I/O Quantity (I#) Index Number

1 Digital Input 1

SSB-UI1

SSB-AO1

SSB-DI1

IO PROCESSOR

MAIN POWER

LISTED PAZX 80M7, OPEN
ENERGY MANAGEMENT EQUIPMENTcc

Tested to Comply with FCC Standards

For Home or Office Use

LISTED

UL

PRODUCT DESIGNATION:

V: 0-10VDC

 I: 0-20mA

V I

JUMPER CONFIGURATION

[TYPICAL FOR AO]

JUMPER CONFIGURATION

[TYPICAL UI]

I V R
 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω
MatrixBBC Programmers Guide (10/5/2012) 9-33

SSB-DI1 SECTION 9: EXPANSION I/O
Figure 9-30: Location of the IO Processor Indicator LED on the SSB-DI1

The status indicator LED shows one of four different states: powered but not enumerated, enumerated but
not configured, configured, and “identify”. The different states are indicated by the rate at which the LED
blinks. The LED blinking quickly, approximately three to four times per second, indicates that the unit is
powered but has not yet been enumerated by the controller. This is useful for identifying units that are
correctly wired but not configured. When the device is enumerated but not configured, the blink rate will
slow to approximately twice a second.

Once the device has been configured, the blink rate will slow down to approximately one blink per second.
This will be the normal state of the device when it is correctly wired, powered, enumerated, and configured
in the controller.

When the controller is set to “Identify” in the Configure Function and Configure Device properties, the LED
on the SSB-ADI1 will be blink three times in quick succession and then pause before repeating the three
blinks again. This is especially useful for quickly identifying an individual device in the field when
troubleshooting the STATbus.

ELECTRICAL RATTINGS:
Power Inputs: Class 2
 24VAC 50/60 Hz Nominal .65A maximum
 .2A PTC Protection
Power Outputs: Class 2
 24 VDC OUT .065A maximum
 .065A PTC Protection
Signal Inputs/Outputs: Class 2
 30 VDC maximum
Communication Signals: Class 2
 SSB, 12VDC 50mA maximum
ENVIRONMENT RATINGS:
Temperature:
 0° to 50° C

Humidity:
 0 to 80% RH non-condensing
Use Copper Conductors Only
Caution:
Terminal Block Torque
3 Inch-pounds maximum

For Instructions See
Reference Manual No. IE-04-00-0126

Caution: Improper wiring will cause damage. Refer to Manual

IO PROCESSOR

MAIN POWER

PRODUCT DESIGNATION:

SSB-UI1

SSB-AO1

SSB-DI1

JUMPER CONFIGURATION

[TYPICAL UI]

 I: 0-20mA

V: 0-10VDC

R: 0-250K Ω

I V R

V: 0-10VDC

 I: 0-20mA

JUMPER CONFIGURATION

[TYPICAL FOR AO]

V I

80M7, OPEN ENERGY
MANAGEMENT EQUIPMENT

U
R

(0579b) PATENT PENDING

This device complies with Part 15 of the FCC Rules.

Operation of this equipment is subject to the following

two conditions: 1) This device may not cause harmful

interference, and 2) This device must accept any

interference received, including interference that may

cause undesired operation.

IO PROCESSOR
9-34 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO1
9.10 SSB-DO1
9.10.1 FEATURES
The SSB-DO1, shown in Figure 9-31, is a STATbus module which provides a single remote digital output
to the MatrixBBC. The digital output on the SSB-DO1 is a relay capable of switching up to 250 VAC/DC at
up to 10 A.

Figure 9-31: The SSB-DO1

9.10.2 MOUNTING THE SSB-DO1
The SSB-DO1 is intended to be installed near the equipment it is going to control. The module is designed
to be mounted in the snap-in plastic track included with the module.

Before installing the module, the snap-in plastic track should be attached to the mounting surface using the
screws provided. Once the snap-in plastic track has been firmly attached, the SSB-DO1 should be
installed by first inserting one edge of the module in the channel on the inside of one side of the rail and
then pressing the module so that it snaps into the other side. This is shown in Figure 9-32.

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

X1
MatrixBBC Programmers Guide (10/5/2012) 9-35

SSB-DO1 SECTION 9: EXPANSION I/O
Figure 9-32: Attaching the SSB-DO1 to the Snap-in Plastic Track

Once the module has been properly mounted, you may make the connections for STATbus and power.

9.10.3 WIRING/CONFIGURATION

9.10.3.1 POWER AND STATBUS CONNECTIONS
Connections for power and STATbus communications are made via terminal block TB1, shown in Figure
9-33. The two wire connection for STATbus communications should be connected to the two left most
terminals labeled “SSB”. A source of 24VAC should be connected to the right two terminals labeled “X1”
and “X2”. The easiest way to connect these terminals is to connect them to the AC OUT terminals on the
same terminal block as the SSB connection on the controller. This allows you to simply run a 4-conductor

WARNING
To avoid damage to the module, you should not
attempt to slide the module into the snap-in
plastic track.
9-36 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO1
cable to connect both power and STATbus communications to the device without any additional wiring.
Alternately, a dedicated external power supply may be provided for the module.

Figure 9-33: SSB and Power Connections on the SSB-DO1

9.10.3.2 RELAY CONNECTIONS
The SSB-DO1 has a single DPDT relay for its output. When the output is energized, the connection is
made between the normally open terminal, labeled 3A and 4A, and the common terminals, labeled 5A and
6A. The normally open terminals are labeled “NO” below the terminal number and the common terminals
are labeled “C”. When the output is not energized, connections will be made between the normally closed
terminals, labeled 1A and 2A, and the common terminals. Like the normally open terminals, the normally
closed terminals are labeled “NC” below the terminal number. The function of each of the relay terminals is
summarized in Table 9-6:.

Table 9-6: SSB-DO1 Relay Terminals

Terminal Connection

1A Normally Closed (NC)

2A Normally Closed (NC)

3A Normally Open (NO)

4A Normally Open (NO)

5A Common

6A Common

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

SSB SSB X1 X2

SSB SSB X1 X2
MatrixBBC Programmers Guide (10/5/2012) 9-37

SSB-DO1 SECTION 9: EXPANSION I/O
9.10.4 SSB-DO1 CONFIGURATION TABLE

Table 9-7: SSB-FI Configuration Table

I/O Quantity (O#) Index Number

1 Digital Output 1
9-38 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO1-I
9.11 SSB-DO1-I
9.11.1 FEATURES
The SSB-DO1-I, shown in Figure 9-34, is identical to the SSB-DO1 except that it includes a single dry
contact, digital input. The digital output on the SSB-DO1-I is a relay capable of switching up to 250 VAC/
DC at up to 10 A. The digital input is a dry contact which is intended for status monitoring of the output
state of the relay. Connecting a wet contact to this input will result in damage to the SSB-DO1-I.

Figure 9-34: The SSB-DO1-I

9.11.2 MOUNTING THE SSB-DO1-I
The SSB-DO1-I is intended to be installed near the equipment it is going to control. The module is
designed to be mounted in the snap-in plastic track included with the module.

Before installing the module, the snap-in plastic track should be attached to the mounting surface using the
screws provided. Once the snap-in plastic track has been firmly attached, the SSB-DO1-I should be
installed by first inserting one edge of the module in the channel on the inside of one side of the rail and
then pressing the module so that it snaps into the other side. This is shown in Figure 9-35.

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

MatrixBBC Programmers Guide (10/5/2012) 9-39

SSB-DO1-I SECTION 9: EXPANSION I/O
Figure 9-35: Attaching the SSB-DO1-I to the Snap-in Plastic Track

 Once the module has been properly mounted, you may make the connections for STATbus and power.

9.11.3 WIRING/CONFIGURATION
9.11.3.1 POWER AND STATBUS CONNECTIONS
Connections for power and STATbus communications are made via terminal block TB1, shown in Figure
9-36. The two wire connection for STATbus communications should be connected to the two left most
terminals labeled “SSB”. A source of 24VAC should be connected to the right two terminals labeled “X1”
and “X2”. The easiest way to connect these terminals is to connect them to the AC OUT terminals on the
same terminal block as the SSB connection on the controller. This allows you to simply run a 4-conductor
cable to connect both power and STATbus communications to the device without any additional wiring.
Alternately, a dedicated external power supply may be provided for the module.

WARNING
To avoid damage to the module, you should not
attempt to slide the module into the snap-in
plastic track.
9-40 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO1-I
Figure 9-36: SSB and Power Connections on the SSB-DO1-I

9.11.3.2 RELAY CONNECTIONS
The SSB-DO1-I has a single DPDT relay for its output. When the output is energized, the connection is
made between the normally open terminal, labeled 3A and 4A, and the common terminals, labeled 5A and
6A. The normally open terminals are labeled “NO” below the terminal number and the common terminals
are labeled “C”. When the output is not energized, connections will be made between the normally closed
terminals, labeled 1A and 2A, and the common terminals. Like the normally open terminals, the normally
closed terminals are labeled “NC” below the terminal number. The function of each of the relay terminals is
summarized in Table 9-8:.

Table 9-8: SSB-DO1-I Relay Terminals

Terminal Connection

1A Normally Closed (NC)

2A Normally Closed (NC)

3A Normally Open (NO)

4A Normally Open (NO)

5A Common

6A Common

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

SSB SSB X1 X2DC2 COM DC1

SSB SSB X1 X2

TB2
MatrixBBC Programmers Guide (10/5/2012) 9-41

SSB-DO1-I SECTION 9: EXPANSION I/O
9.11.3.3 DRY CONTACT INPUT CONNECTION
The SSB-DO1-I has a single dry contact digital input intended for use as a status monitor for the relay on
the module. Connecting a wet contact to this input will result in damage to the SSB-DO1-I. This input can
only be assigned to a Digital Input in the controller. Unlike the on-board digital input found on an NB-GPC,
the dry contact input on the SSB-DO1-I is not capable of performing pulse counting. Connections for the
input are via the COM and DC1 terminals on terminal block TB2 as shown in Figure 9-37.

Figure 9-37: Connecting a Dry Contact Input to the SSB-DO1-I

CAUTION
Assigning the SSB-DO1-I’s GID number to the GI,
and I# properties of an input only assigns the input
on the module. The output will not be assigned
unless the GID number and O# property are also
assigned to a Digital Output in the controller.

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

SSB SSB X1 X2DC2 COM DC1

TB2

DC2 COM DC1

TB2
9-42 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO1-I
9.11.4 SSB-DO1-I CONFIGURATION TABLE

Table 9-9: SSB-DO1-I Configuration Table

I/O Termination
(I# or O#) Index

Number

Digital Output 1 1

Digital Input 1 1
MatrixBBC Programmers Guide (10/5/2012) 9-43

SSB-DO2 SECTION 9: EXPANSION I/O
9.12 SSB-DO2
9.12.1 FEATURES
The SSB-DO2, shown in Figure 9-38, is a STATbus module which provides two remote digital outputs to
the MatrixBBC. The digital outputs on the SSB-DO2 are relays capable of switching up to 250 VAC/DC at
up to 10 A each.

Figure 9-38: The SSB-DO2

9.12.2 MOUNTING THE SSB-DO2
The SSB-DO2 is intended to be installed near the equipment it is going to control. The module is designed
to be mounted in the snap-in plastic track included with the module.

Before installing the module, the snap-in plastic track should be attached to the mounting surface using
the screws provided. Once the snap-in plastic track has been firmly attached, the SSB-DO2 should be
installed by first inserting one edge of the module in the channel on the inside of one side of the rail and
then pressing the module so that it snaps into the other side. This is shown in Figure 9-39.

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

9-44 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO2
Figure 9-39: Attaching the SSB-DO2 to the Snap-in Plastic Track

Once the module has been properly mounted, you may make the connections for STATbus and power.

9.12.3 WIRING/CONFIGURATION

9.12.3.1 POWER AND STATBUS CONNECTIONS
Connections for power and STATbus communications are made via terminal block TB1, shown in Figure 9-
40. The two wire connection for STATbus communications should be connected to the two left most
terminals labeled “SSB”. A source of 24VAC should be connected to the right two terminals labeled “X1”
and “X2”. The easiest way to connect these terminals is to connect them to the AC OUT terminals on the
same terminal block as the SSB connection on the controller. This allows you to simply run a 4-conductor
cable to connect both power and STATbus communications to the device without any additional wiring.
Alternately, a dedicated external power supply may be provided for the module.

WARNING
To avoid damage to the module, you should not
attempt to slide the module into the snap-in
plastic track.
MatrixBBC Programmers Guide (10/5/2012) 9-45

SSB-DO2 SECTION 9: EXPANSION I/O
Figure 9-40: SSB and Power Connections on the SSB-DO2

9.12.3.2 RELAY CONNECTIONS
The SSB-DO2 has two (2) DPDT relays for its outputs. When output 1 is energized, the connection is
made between the normally open terminal, labeled 3A and 4A, and the common terminals, labeled 5 A
and 6A. When the coil for output 2 is energized, the connection is made between the normally open
terminal, labeled 3B and 4B, and the common terminals, labeled 5B and 6B. The normally open terminals
are labeled “NO” below the terminal number and the common terminals are labeled “C”. When the output
1 is not energized connections will be made between the normally closed terminals, labeled 1A and 2A,
and the common terminals. SImilarly, when output 2 is no energized, connections will be made between
the normally closed terminals, labeled 1B and 2B, and the common terminals. Like the normally open
terminals, the normally closed terminals are labeled “NC” below the terminal number. The function of each
of the relay terminals is summarized in Table 9-10:.

Table 9-10: SSB-DO2 Relay Terminals

Terminal Connection

1A Normally Closed (NC)

2A Normally Closed (NC)

3A Normally Open (NO)

4A Normally Open (NO)

5A Common

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

SSB SSB X1 X2

SSB SSB X1 X2
9-46 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO2
9.12.4 SSB-DO2 CONFIGURATION TABLE

6A Common

1B Normally Closed (NC)

2B Normally Closed (NC)

3B Normally Open (NO)

4B Normally Open (NO)

5B Common

6B Common

Table 9-11: SSB-DO2 Configuration Table

I/O Termination
(I# or O#) Index

Number

Digital Output 1 1

Digital Output 2 2

Table 9-10: SSB-DO2 Relay Terminals

Terminal Connection
MatrixBBC Programmers Guide (10/5/2012) 9-47

SSB-DO2-I SECTION 9: EXPANSION I/O
9.13 SSB-DO2-I
9.13.1 FEATURES
The SSB-DO2-I, shown in Figure 9-41, is identical to the SSB-DO2 except that it includes two dry contact,
digital inputs for device status monitoring. The digital inputs are dry contacts which are intended for status
monitoring of the output states of the relays. Connecting wet contacts to these inputs will result in damage
to the SSB-DO2-I. These inputs are mapped to Digital Inputs objects, but are not capable of performing
pulse counting.

Figure 9-41: The SSB-DO2-I

9.13.2 MOUNTING THE SSB-DO2-I
The SSB-DO2-I is intended to be installed near the equipment it is going to control. The module is
designed to be mounted in the snap-in plastic track included with the module.

Before installing the module, the snap-in plastic track should be attached to the mounting surface using
the screws provided. Once the snap-in plastic track has been firmly attached, the SSB-DO2-I should be
installed by first inserting one edge of the module in the channel on the inside of one side of the rail and
then pressing the module so that it snaps into the other side. This is shown in Figure 9-42.

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

9-48 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO2-I
Figure 9-42: Attaching the SSB-DO2-I to the Snap-in Plastic Track

Once the module has been properly mounted, you may make the connections for STATbus and power.

9.13.3 WIRING/CONFIGURATION

9.13.3.1 POWER AND STATBUS CONNECTIONS
Connections for power and STATbus communications are made via terminal block TB1, shown in Figure 9-
43. The two wire connection for STATbus communications should be connected to the two left most
terminals labeled “SSB”. A source of 24VAC should be connected to the right two terminals labeled “X1”
and “X2”. The easiest way to connect these terminals is to connect them to the AC OUT terminals on the
same terminal block as the SSB connection on the controller. This allows you to simply run a 4-conductor
cable to connect both power and STATbus communications to the device without any additional wiring.
Alternately, a dedicated external power supply may be provided for the module.

WARNING
To avoid damage to the module, you should not
attempt to slide the module into the snap-in
plastic track.
MatrixBBC Programmers Guide (10/5/2012) 9-49

SSB-DO2-I SECTION 9: EXPANSION I/O
Figure 9-43: SSB and Power Connections on the SSB-DO2-I

9.13.3.2 RELAY CONNECTIONS
The SSB-DO2-I has two (2) DPDT relays for its outputs. When output 1 is energized, the connection is
made between the normally open terminal, labeled 3A and 4A, and the common terminals, labeled 5 A
and 6A. When the coil for output 2 is energized, the connection is made between the normally open
terminal, labeled 3B and 4B, and the common terminals, labeled 5B and 6B. The normally open terminals
are labeled “NO” below the terminal number and the common terminals are labeled “C”. When the output
1 is not energized connections will be made between the normally closed terminals, labeled 1A and 2A,
and the common terminals. SImilarly, when output 2 is no energized, connections will be made between
the normally closed terminals, labeled 1B and 2B, and the common terminals. The normally closed
terminals are labeled “NC” below the terminal number. The function of each of the relay terminals is
summarized in Table 9-12:.

Table 9-12: SSB-DO2-I Relay Terminals

Terminal Connection

1A Normally Closed (NC)

2A Normally Closed (NC)

3A Normally Open (NO)

4A Normally Open (NO)

5A Common

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

SSB SSB X1 X2DC2 COM DC1

SSB SSB X1 X2

TB2
9-50 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-DO2-I
9.13.3.3 DRY CONTACT INPUT CONNECTIONS
The SSB-DO2-I has two dry contact digital inputs intended for use as a status monitors for the relays on
the module. Connecting a wet contact to these input will result in damage to the SSB-DO2-I. These inputs
can only be assigned to Digital Inputs in the controller. Unlike the on-board digital input found on an NB-
GPC, the dry contact inputs on the SSB-DO1-I are not capable of performing pulse counting. Connections
for the inputs are made on terminal block TB2, with the first dry contact connected to the COM and DC1
terminals and the second dry contact connected to the COM and DC2 terminals as shown in Figure 9-44.

Figure 9-44: Connecting Dry Contact Inputs to the SSB-DO2-I

6A Common

1B Normally Closed (NC)

2B Normally Closed (NC)

3B Normally Open (NO)

4B Normally Open (NO)

5B Common

6B Common

Table 9-12: SSB-DO2-I Relay Terminals

Terminal Connection

D5D5 D4D4

Q1Q1

D1D1

U5U5

D3D3

D2D2

Q2Q2

D6D6

D10D10 D11D11

R10
R10

R7R7

RE

R8R8

RFRF

R6R6

R4R4

R5R5

R3R3

R1R1R2R2

U2U2

C3C3

C1C1

I2L1L1

C
2

C
2

U
1

U
1

U
4

U
4

C5

C
4

D
9

D
7

Y
1

U3

X
X
X

X
X
X

RP1
RP1

R9 RA RD RB

RC I1

D
8

SSB SSB X1 X2DC2 COM DC1

TB2

DC2 COM DC1

TB2
MatrixBBC Programmers Guide (10/5/2012) 9-51

SSB-DO2-I SECTION 9: EXPANSION I/O
9.13.4 SSB-DO1-I CONFIGURATION TABLE

Table 9-13: SSB-DO1-I Configuration Table

I/O Termination
(I# or O#) Index

Number

Digital Output 1 1

Digital Output 2 2

Digital Input 1 1

Digital Input 2 2
9-52 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX FAMILY
9.14 SSB-IOX FAMILY
The SSB-IOX Module Family are multi-I/O STATbus modules - providing multiple universal inputs, multiple
analog outputs, and multiple digital outputs in contrast to singular SSB modules such as the SSB-UI1,
SSB-AO1, and others.

SSB-IOX modules are available in four models, described below in Table 9-14.

Table 9-14 SSB-IOX Family Devices

Model UIs DIs AOs DOs

SSB-IOX1-1 4 1 2 2

SSB-IOX1-2 8 - - -

SSB-IOX2-1 12 - 6 6

SBC-IOX2-2 12 - - -
MatrixBBC Programmers Guide (10/5/2012) 9-53

SSB-IOX1-X SECTION 9: EXPANSION I/O
9.15 SSB-IOX1-X
9.15.1 SSB-IOX1-1 FEATURES
The SSB-IOX1-1, shown in Figure 9-45, is a STATbus module based on the same hardware as the GPC2
controller. It provides four (4) universal inputs, one (1) pulse input, two (2) analog outputs, and two (2)
digital outputs.

Figure 9-45 : The SSB-IOX1-1 Module

9.15.2 SSB-IOX1-2 FEATURES
The SSB-IOX1-2, shown in Table 9-46, is a STATbus module based on the same hardware as the GPC2
controller. It provides eight (8) universal inputs.

Figure 9-46 : The SSB-IOX1-2 Module
9-54 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX1-X
9.15.3 WIRING/CONFIGURATION
To properly configure the SSB-IOX1-X modules, you must connect the wires for network and power,
connect any inputs and/or outputs, configure the IVR jumpers for Universal Inputs, and configure the VI
jumpers for any Analog Outputs.

9.15.4 NETWORK & POWER
The SSB-IOX1-X must be connected to the STATbus network so that it may communicate. The network
connection is made to terminal 41 and 42, labeled SSB, of terminal block TB9. The location of these
terminals are shown in Figure 9-47. Power for the module is connected to terminals 39 and 40, labeled X1
and X2, on the same terminal block. This power may be provided from the AC Out terminals of the
STATbus connection at the controller or a dedicated transformer may be connected.

Figure 9-47: Location of the Network and Power Connections on the SSB-IOX1-1

9.15.5 UNIVERSAL INPUTS
To properly connect and configure the Universal Inputs on the SSB-IOX1-X, you must connect the sensor
to the input and configure the IVR jumper to specify the type of sensor connected. The Universal Inputs
are located in the upper left corner of the controller, as shown in Figure 9-48.

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

IOX

SSB

IOS

PWR
MatrixBBC Programmers Guide (10/5/2012) 9-55

SSB-IOX1-X SECTION 9: EXPANSION I/O
Figure 9-48: Location of the Universal Inputs on the SSB-IOX1-1 Module

To connect an input device to the SSB-IOX1-X, you must insert the leads from the sensor into the
terminals for the desired input and the adjacent COM terminal. Two inputs share a single COM terminal,
i.e. UIs 1 and 2 use the COM connection on terminal 2 while UIs 3 and 4 use the COM connection on
terminal 5. Figure 9-49 shows how a thermistor would be connected to UI3.

Figure 9-49: Connecting a Sensor to an Input on the SSB-IOX1-1

Each Universal Input on the SSB-IOX1-X has an IVR jumper, shown in Figure 9-50, associated with it
which is used to select the type of input connected to the corresponding input.

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

UNIVERSAL INPUTS

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

TB1

SENSOR
9-56 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX1-X
Figure 9-50: Location of the IVR Jumpers on the SSB-IOX1-1

Each input can be configured to read a 0-20 mA, 0-10 V or a 0-250 k. The jumper settings corresponding
to these options are shown in Figure 9-51a-c respectively.

Figure 9-51: SSB-IOX1 IVR Jumper Positions

9.15.6 DIGITAL INPUTS
The SSB-IOX1-1 has a single Digital Input which is capable of performing high-speed pulse counting. The
digital input is a wet contact input located on the left side of the module, as shown in Figure 9-52. There is
a 24VDC power output connected to TB3 which is provided as a convenient way to power the wet contact
connected to the input.

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

UI2

UI3
UI4

IVR

UI1

(a)

(b)

(c)

0-20 mA Current

0-10 VDC Voltage

0-250 K ohm

IVR
MatrixBBC Programmers Guide (10/5/2012) 9-57

SSB-IOX1-X SECTION 9: EXPANSION I/O
Figure 9-52: Location of the Digital Input and 24VDC Output on the SSB-IOX1-1

To connect a sensor to the pulse input on the SSB-IOX1-1, you must attach the leads from the sensor to
the OIA and OIB terminals on terminal block TB4 as shown in Figure 9-53.

Figure 9-53: Connecting a Digital Input to the SSB-IOX1-1

9.15.7 ANALOG OUTPUTS

Figure 9-54: Location of the Analog Outputs on the SSB-IOX1-X

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

COMMON

+24 VDC OUT

DIGITAL INPUTOIA(15)

(16)OIB

TB3

(14)

TB4

(13)

TB4

OIA

OIB

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

ANALOG OUTPUTS

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7
9-58 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX1-X
Analog outputs are connected to either terminals 21 (AO1) and 22 (COM) or 23 (AO2) and 24 (COM). A
device connected to Analog Output 2 is shown in Figure 9-55.

Figure 9-55: Connecting an Analog Output to the SSB-IOX1

For each Analog Output on the SSB-IOX1-1 there is a corresponding VI jumper used to select the output
range for that output. These jumpers are located to the left of TB7. Each output can be configured for 0-10
VDC or 0-20 mA operation, using the jumper positions shown in Figure 9-56a and b respectively.

Figure 9-56: SSB-IOX1-1 VI Jumper Positions

9.15.8 DIGITAL OUTPUTS
The SSB-IOX1-1’s two Digital Outputs are located on the right side of the controller as shown in Figure 9-
57.

ANALOG OUTPUTS

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

0-10V OR 0-20 mA DEV

(a)

(b)

0-10V DC Voltage

0-20 mA Current

VI
MatrixBBC Programmers Guide (10/5/2012) 9-59

SSB-IOX1-X SECTION 9: EXPANSION I/O
Figure 9-57: Location of the Digital Outputs on the SSB-IOX1-1

Output devices are connected using terminals 29 and 30 (labeled K1), for Digital Output 1, and terminals
31 and 32 (labeled K2), for Digital Output 2. Figure 9-58 shown a device connected to Digital Output 1.

Figure 9-58: Connecting an Digital Output to the SSB-IOX1-1

9.15.9 MOUNTING THE SSB-IOX1-X

The SSB-IOX1-X should be mounted to a site where the temperature is between 32º F and 122º F (0º C to
50º C) with a relative humidity of 0-80% non-condensing.

The mounting area should be flat and unobstructed by other equipment or machinery, free of moisture,
and located away from potential leakage.

NOTE
The SSB-IOX1-1 and SSB-IOX1-2 is an open type
device which, to meet UL specifications, is
intended to be mounted on a panel that completes
the ultimate enclosure.

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

DIGITAL OUTPUTS

K1

K2

(30)

(32)

(31)

(29)
TB8

TB8

Load Power
Supply

Load Power
Supply

Load

K1

K2
(32)

(30)

(31)

TB8

(29)
9-60 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX1-X
9.15.10STATUS INDICATOR LED
The SSB-IOX1-X has an IOS indicator LED which provides feedback on the current operational status of
the module’s IO processor. The IOS LED is located on lower right side of the module as shown in Figure 9-
59.

Figure 9-59: Location of the IOS Indicator LED on the SSB-IOX1-1

The IOS LED shows one of four different states: powered but not enumerated, enumerated but not
configured, configured, and “identify”. The different states are indicated by the rate at which the LED
blinks. The LED blinking quickly, approximately three to four times per second, indicates that the unit is
powered but has not yet been enumerated by the controller. This is useful for identifying units that are
correctly wired but not configured. When the device is enumerated but not configured, the blink rate will
slow to approximately twice a second.

Once the device has been configured, the blink rate will slow down to approximately one blink per second.
This will be the normal state of the device when it is correctly wired, powered, enumerated, and configured
in the controller.

When the controller is set to “Identify” in the Configure Function and Configure Device properties, the IOS
LED on the SSB-IOX1 will be blink three times in quick succession and then pause before repeating the
three blinks again. This is especially useful for quickly identifying an individual device in the field when
troubleshooting the STATbus.

NOTE
When installing the SSB-IOX1-1 and SSB-IOX1-2
make sure that there is sufficient room to allow
insertion and removal of the terminal block plugs..

Use Copper Conductors Only

Terminal Block Torque

3 inch-pounds maximum

Caution:

(0575)

Product Designation:

 0 to 80% RH non-condensing

SSB (42)

SSB

AC IN

TB9

X2 (40)

(41)

X1 (39)

ELECTRICAL RATINGS:

Triac Outputs: Class 2

Signal Inputs/Outputs: Class 2

Communication Signals: Class 2

ENVIRONMENT RATINGS:

Temperature:

Humidity:

Power Inputs: Class 2

Power Outputs: Class 2

COMMON

+24 VDC OUT

DIGITAL INPUT

UNIVERSAL INPUTS

OIA(15)

(16)OIB

TB3

(14)

TB4

(13)

UI1(1)

UI3

(6)

(5)

UI4

COM

(2)

(4)

(3) UI2

COM

TB1

JUMPER CONFIGURATION

R: 0-250K ohm

V: 0-10VDC

[TYPICAL UI]

I: 0-20mA

UI2

UI3
UI4

IVR

UI1

IVR

DIGITAL OUTPUTS

ANALOG OUTPUTS

JUMPER CONFIGURATION

 SSB, 12VDC 50mA maximum

 30 VDC maximum

 EIA-485, 5VDC maximum

 0° to 50°C

 1.35A PTC Protection

 24VAC Out 1.3A maximum

 .2A PTC Protection

 24VDC Out .15A maximum

 1A 30 VAC maximum

I: 0-20mA

V: 0-10VDC

[TYPICAL AO]

 24VAC 50/60 Hz Nominal 3.2A maximum

 1.85A PTC Protection
VI

K

K2

(30)

(32)

(31)

(29)
TB8

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

SSB-IOX1

AO2

AO

VI

IOX

SSB

IOS

PWR

SSB

IOS

PWR
MatrixBBC Programmers Guide (10/5/2012) 9-61

SSB-IOX1-X SECTION 9: EXPANSION I/O
9.15.11SSB-IOX1-1 CONFIGURATION TABLE

9.15.11.1 SSB-IOX1-2 CONFIGURATION TABLE

Table 9-15: SSB-IOX1-1 Configuration Table

I/O Termination
(I# or O#) Index

Number

Universal Input 1 1

Universal Input 2 2

Universal Input 3 3

Universal Input 4 4

Digital Input 1 1

Analog Output 1 1

Analog Output 2 2

Digital Output 1 1

Digital Output 2 2

Table 9-16 SSB-IOX1-2 Configuration Table

I/O Termination
(I# or O#) Index

Number

Universal Input 1 1

Universal Input 2 2

Universal Input 3 3

Universal Input 4 4

Universal Input 5 5

Universal Input 6 6

Universal Input 7 7

Universal Input 8 8
9-62 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX2-X
9.16 SSB-IOX2-X
9.16.1 SSB-IOX2-1 FEATURES
The SSB-IOX2-1, shown in Figure 9-60, is a STATbus module based on the same hardware as the GPC1
controller. It provides four (12) universal inputs, six (6) analog outputs, and six (6) digital outputs.

Figure 9-60 : The SSB-IOX2-1 Module

9.16.2 SSB-IOX2-2 MODULE
The SSB-IOX2-2, shown in Figure 9-61, is a STATbus module based on the same hardware as the GPC1
controller. It provides twelve(12) universal inputs.
MatrixBBC Programmers Guide (10/5/2012) 9-63

SSB-IOX2-X SECTION 9: EXPANSION I/O
Figure 9-61 : The SSB-IOX2-2 Module

9.16.3 WIRING/CONFIGURATION
To properly configure the SSB-IOX2-X modules, you must connect the wires for network and power,
connect any inputs and/or outputs, configure the IVR jumpers for Universal Inputs, and configure the VI
jumpers for any Analog Outputs.

9.16.4 NETWORK & POWER
The SSB-IOX2-X must be connected to the STATbus network so that it may communicate. The network
connection is made to terminal 41 and 42, labeled SSB, of terminal block TB9. The location of these
terminals are shown in Figure 9-47. Power for the module is connected to terminals 39 and 40, labeled X1
and X2, on the same terminal block. This power may be provided from the AC Out terminals of the
STATbus connection at the controller or a dedicated transformer may be connected.
9-64 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX2-X
Figure 9-62: Location of the Network and Power Connections on the SSB-IOX2-1

9.16.5 UNIVERSAL INPUTS
To properly connect and configure the Universal Inputs on the SSB-IOX2-X, you must connect the sensor
to the input and configure the IVR jumper to specify the type of sensor connected. The Universal Inputs
are located in the upper left corner of the controller, as shown in Figure 9-48.
MatrixBBC Programmers Guide (10/5/2012) 9-65

SSB-IOX2-X SECTION 9: EXPANSION I/O
Figure 9-63: Location of the Universal Inputs on the SSB-IOX2-1 Module

To connect an input device to the SSB-IOX2-X, you must insert the leads from the sensor into the
terminals for the desired input and the adjacent COM terminal. Two inputs share a single COM terminal,
i.e. UIs 1 and 2 use the COM connection on terminal 2 while UIs 3 and 4 use the COM connection on
terminal 5. shows how a thermistor would be connected to UI3. Figure 5-64 shows how a thermistor would
be connected to UI3.

Figure 9-64: Connecting a Sensor to an Input on the SSB-IOX2-1

TB1

SENSOR
9-66 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX2-X
Each Universal Input on the SSB-IOX2-X has an IVR jumper, shown in Figure 5-65, associated with it
which is used to select the type of input connected to the corresponding input.

Figure 9-65: Location of the IVR Jumpers on the SSB-IOX2-1

Each input can be configured to read a 0-20 mA, 0-10 V or a 0-250 k. The jumper settings corresponding
to these options are shown in Figure 9-51a-c respectively.

Figure 9-66: SSB-IOX1 IVR Jumper Positions

(a)

(b)

(c)

0-20 mA Current

0-10 VDC Voltage

0-250 K ohm

IVR
MatrixBBC Programmers Guide (10/5/2012) 9-67

SSB-IOX2-X SECTION 9: EXPANSION I/O
9.16.6 ANALOG OUTPUTS

Figure 9-67: Location of the Analog Outputs on the SSB-IOX2-1

Analog outputs are connected to either terminals 45(AO1) and 46(COM) or 47(AO2) and 48(COM). A
device connected to Analog Output 2 is shown in Figure 5-68.

Figure 9-68: Connecting an Analog Output to the SSB-IOX2-1

For each Analog Output on the SSB-IOX2-1 there is a corresponding VI jumper used to select the output
range for that output. These jumpers are located to the left of TB13. Each output can be configured for 0-
10 VDC or 0-20 mA operation, using the jumper positions shown in Figure 5-69a and b respectively.

ANALOG OUTPUTS

(21)AO1

(24)COM

AO2

COM (22)

(23)

TB7

0-10V OR 0-20 mA DEV
9-68 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX2-X
Figure 9-69: SSB-IOX1-1 VI Jumper Positions

9.16.7 DIGITAL OUTPUTS
The SSB-IOX2-1’s six Digital Outputs are located on the right side of the controller as shown in Figure 5-
70.

Figure 9-70: Location of the Digital Outputs on the SSB-IOX2-1

Output devices are connected using terminals 57 and 58 (labeled K1), for Digital Output 1, and terminals
59and 60(labeled K2), for Digital Output 2. Figure 5-71 shows a device connected to Digital Output 1.

(a)

(b)

0-10V DC Voltage

0-20 mA Current

VI
MatrixBBC Programmers Guide (10/5/2012) 9-69

SSB-IOX2-X SECTION 9: EXPANSION I/O
Figure 9-71: Connecting an Digital Output to the SSB-IOX2-1

9.16.8 MOUNTING THE SSB-IOX2-X

The SSB-IOX2-X should be mounted to a site where the temperature is between 32º F and 122º F (0º C to
50º C) with a relative humidity of 0-80% non-condensing.

The mounting area should be flat and unobstructed by other equipment or machinery, free of moisture,
and located away from potential leakage.

9.16.9 SSB-IOX2-1 CONFIGURATION TABLE

NOTE
The SSB-IOX2-x is an open type device which, to
meet UL specifications, is intended to be mounted
on a panel that completes the ultimate enclosure.

NOTE
When installing the SSB-IOX2-X make sure that
there is sufficient room to allow insertion and
removal of the terminal block plugs..

Table 9-17: SSB-IOX2-1 Configuration Table

I/O Termination
(I# or O#) Index

Number

Universal Input 1 1

Universal Input 2 2

Universal Input 3 3

TB8

Load Power
Supply

Load Power
Supply

Load

K1

K2
(32)

(30)

(31)

TB8

(29)
9-70 MatrixBBC Programmers Guide (10/5/2012)

SECTION 9: EXPANSION I/O SSB-IOX2-X
9.16.9.1 SSB-IOX2-2 CONFIGURATION TABLE

Universal Input 4 4

Universal Input 5 5

Universal Input 6 6

Universal Input 7 7

Universal Input 8 8

Universal Input 9 9

Universal Input 10 10

Universal Input 11 11

Universal Input 12 12

Analog Output 1 1

Analog Output 2 2

Analog Output 3 3

Analog Output 4 4

Analog Output 5 5

Analog Output 6 6

Digital Output 1 1

Digital Output 2 2

Digital Output 3 3

Digital Output 4 4

Digital Output 5 5

Digital Output 6 6

Table 9-18 SSB-IOX2-2 Configuration Table

I/O Termination
(I# or O#) Index

Number

Universal Input 1 1

Universal Input 2 2

Table 9-17: SSB-IOX2-1 Configuration Table

I/O Termination
(I# or O#) Index

Number
MatrixBBC Programmers Guide (10/5/2012) 9-71

SSB-IOX2-X SECTION 9: EXPANSION I/O
Universal Input 3 3

Universal Input 4 4

Universal Input 5 5

Universal Input 6 6

Universal Input 7 7

Universal Input 8 8

Universal Input 9 9

Universal Input 10 10

Universal Input 11 11

Universal Input 12 12

Table 9-18 SSB-IOX2-2 Configuration Table

I/O Termination
(I# or O#) Index

Number
9-72 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP

This section describes the process of setup and configuration of both Universal Inputs (which can be
Analog or Binary) and Digital Inputs (optically isolated, high-speed pulse-counting inputs), as well as the
setup of Piecewise Curves for custom Analog Input sensor configurations. The MatrixBBC supports up to a
maximum of 144 Inputs (Analog or Binary).
IN THIS SECTION
Inputs Overview ... 10-3
 Programming Concepts and Techniques .. 10-3
 Programming Concepts and Techniques .. 10-3
 Make The object-name Unique.. 10-3
 Enable Alarming When Needed... 10-3
Universal Inputs ... 10-4
 Analog Input Configuration ... 10-4
 Configuring Analog Input Alarm/Event Notifications ... 10-7
 Configuring Analog Input Alarm/Event Notifications ... 10-7
 Configuring Binary Input Alarm/Event Notifications .. 10-9
Digital Inputs .. 10-10
Piecewise Curves ...10-11
 Piecewise Curves for Voltage Inputs... 10-12
 Piecewise Curves for Current Inputs... 10-13
 Piecewise Curves for Resistance Inputs... 10-14
MatrixBBC Programmers Guide (10/5/2012) 10-1

SECTION 10: INPUTS SETUP
10-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP INPUTS OVERVIEW
10.1 INPUTS OVERVIEW
MatrixBBC product models support Universal Inputs, capable of being configured to monitor analog and
binary signals. Models of GPC products support either on-board I/O or expansion modules via STATbus.
While the total amount of inputs per GPC will depend on the model number, setup and configuration of
outputs is exactly the same across the product family. The table below provides information on-board I/O
support, as well as expansion support.

10.1.1 PROGRAMMING CONCEPTS AND TECHNIQUES
To enhance your programming experience, the following are a few helpful concepts and techniques to
keep in mind when using these objects.

10.1.1.1 MAKE THE OBJECT-NAME UNIQUE
The GPC supports the ability to allow each object’s name to be assigned a custom value. By default, the
software uses generic names for objects. For ease of programming and flow, it is strongly recommended
that you change the object-name of any used Input objects. This allows you not only to keep better track of
which objects have been used, but also allows you to easily troubleshoot your linked logic.

10.1.1.2 ENABLE ALARMING WHEN NEEDED
All Input objects optionally support alarming. When alarming is disabled (EA) Enable Alarming = Disabled
(0), fewer properties will be displayed in NB-Pro, allowing the objects to be interpreted easier during
programming.
MatrixBBC Programmers Guide (10/5/2012) 10-3

UNIVERSAL INPUTS SECTION 10: INPUTS SETUP
10.2 UNIVERSAL INPUTS
Each universal input may operate as either a digital or analog input. Each input may be configured
individually to read any of the following:
. digital (on/off)
. linear inputs (0-5 V, 0-10 V, 0-20 mA, 4-20 mA, etc.) scaled between a programmable minimum and

maximum value
. non-linear inputs with response provided via programmable Piecewise Curve objects
. thermistor (Precon type III 77º @ 10k
. low-speed pulsing
. SMARTStat device (using available instances higher than the pre-assigned on-board)

10.2.1 CREATING ANALOG INPUTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Analog Input objects are created by the technician when necessary, and are done in a dynamic manner.

To create an Analog Input object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MK) Max Analog Inputs property. By default, this value is set to 0, indicating no Analog

Input objects exist.
3. Write the number of total Analog Input objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Analog Inputs, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Analog Input objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

10.2.2 ANALOG INPUT CONFIGURATION
The following sub-sections discuss the configuration of analog inputs.

10.2.2.1 CURRENT INPUTS
Any sensor which generates a signal in the form of a current is classified as a current sensor. Ranges of 0-
20 mA and 4-20 mA are common in sensors. The current produced by these sensors is often proportional
to the value being measured. For example, if a pressure sensor measured 0 to 5 inches of water gauge
and had an output range of 0 to 20 mA, then a reading of 10 mA would correspond to a pressure of 2.5
inches of water gauge.

The first thing that needs to be done so that a universal input can be used as a current input is to make
sure that the STATbus expansion module has been configured property (relative to jumpers).

Once the type of sensor has been set, you need to use NB-Pro. Configuration entails telling the MatrixBBC
what type of sensor is connected to an input and then specifying the range of values over which that
sensors operates.

To specify the sensor type, you must open the Analog Input object corresponding to the input you are
configuring. Next, you want to set the (ST) Sensor Type property to a value of 3, for 4-20 mA inputs, or 8,
for 0-20 mA inputs.
10-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP UNIVERSAL INPUTS
You also need to specify the range over which the sensor operates. This is necessary so that the object
can calculate the measured value from the input signal. The min-pres-value property should be set to the
lowest value that your sensor can measure. The max-pres-value property should be set to the maximum
scaled value for your input.

As an example, sensors which measure relative humidity are often current sensors that operate in the 4-20
mA range. For a sensor of this type you would set ST=3 because the sensor measures 4-20 mA. Relative
humidity ranges from 0 to 100% so you would set min-pres-value=0 and max-pres-value=100 to
represent the limits of the sensor’s output. In this case, a raw value of 4 mA would be scaled to a value of
0% in engineering units. The relative humidity sensor would read 100% if the input were reading a signal of
20mA.

10.2.3 VOLTAGE INPUTS
Any sensor which puts out a voltage in response to a measured value is classified as a voltage sensor.
Voltage sensors behave in very much the same way as current sensors.

To specify the sensor type, you must to go to Universal Input object corresponding to the input you are
configuring. Next, you want to set the (ST) Sensor Type property to a value of 2, for 0-5 V inputs, or 6, for
0-10 V inputs.

You also need to specify the range over which the sensor operates. This is necessary so that the object
can calculate the measured value from the input signal. The min-pres-value property should be set to the
lowest value that your sensor can measure. This would correspond to the reading at zero volts. The max-
pres-value property should be set to the maximum scaled value for your input. For example, if a 0-10 V

NOTE
When switching from a digital sensor type to an
analog sensor type, the object type will
automatically change from binary to analog. When
this occurs, you must re-discover the object using
the appropriate selection from the Discovery menu
of NB-Pro. Refer to NB-Pro User Manual for more
information.

NOTE
When switching from a binary sensor type to an
analog sensor type, you must reset the MatrixBBC
after changing the sensor type. Once done, you
then have to rediscover the associated object. This
process allows you to view other properties
associated to the object, such as minimum and
maximum scaled values. Refer to NB-Pro User
Manual for more information.
MatrixBBC Programmers Guide (10/5/2012) 10-5

UNIVERSAL INPUTS SECTION 10: INPUTS SETUP
carbon dioxide sensor measuring from 0-5000 ppm would have min-pres-value would be set to 0 and
max-pres-value would be set to 5000.

10.2.3.1 THERMISTOR INPUTS
The thermistor is one of the most common types of resistive sensors for temperature measurement. The
thermistor’s combination of high accuracy over a wide range coupled with its low cost makes it one of the
most popular temperature sensors used. Because of the thermistor’s popularity, the MatrixBBC has the
response curve for a Precon type III thermistor built in.

Set the (ST) Sensor Type property equal to 7, the value which corresponds to a thermistor. The object will
then automatically set the min-pres-value to -35.0 and the max-pres-value to 240.0, the minimum and
maximum values that can be read by this type of sensor. The temperature will now be displayed in the
present-value property of this object. The value of present-value will also be displayed in the Universal
Input Summary object.

At this point, it is helpful to give the object a name so it can be easily identify in the future. You can name
the object by setting the value of the object-name property. You should then check the reading and adjust
any disagreement between the sensor and a known reading using the (OF) Input Offset property, This
specifies a fixed offset for the sensor and would be used if the sensor reading was off by a fixed amount.
For example, if a sensor was reading three degrees below the actual room temperature. In that case, you
would set OF=3.0 to correct the reading.

10.2.3.2 NON-LINEAR INPUTS
The thermistors discussed previously are just one example of a sensor who’s output characteristics are
well defined. Because Precon type III thermistors are so prevalent, the output response curve is included
with the controller. However, there are a number of other common sensors who’s response is non-linear.
For these types of inputs, the MatrixBBC provides the option of using one of the available Piecewise Curve
objects to specify the response of the input device.

The Piecewise Curves can be used with current, voltage, or resistive inputs. Before configuring the
Piecewise Curve, make sure that the IVR jumper is in the correct position for the type of sensor being used
on the STATbus Expansion Module.

To use an input with a non-linear response, you must define the Piecewise Curve and then set the input to
use the curve you have defined to scale its readings. The process for defining the Piecewise Curve is
given later in this manual. The response data necessary to construct the curve will usually be available in
the catalog from which the sensor was ordered or on the data sheet accompanying the sensor.

To set the input to use the Piecewise Curve, set the (ST) Sensor Type property for the input equal to one
of the available Piecewise Curve objects. This tells the MatrixBBC to use a Piecewise Curve object.

NOTE
When switching from a binary sensor type to an
analog sensor type, you must rediscover the
associated object. This process allows you to view
other properties associated to the object, such as
minimum and maximum scaled values. Refer to
NB-Pro User Manual for more information.
10-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP UNIVERSAL INPUTS
At this point, you should give the object a name so that you can easily identify it in the future. You can
name the object by writing to the object-name property.

10.2.4 CONFIGURING ANALOG INPUT ALARM/EVENT NOTIFICATIONS
Analog Inputs can be configured to support alarm/event notifications. To enable alarming for an Analog
Inputs, set (EA) Enable Alarming = True. Once configured, additional properties will become available
that control the setup and configuration of how alarms/events are handled by the object.

Analog Inputs objects can be configured to trigger one of the two following conditions:
. Low Limit - occurs when present-value is less than the value specified in low-limit.
. High Limit - occurs when present-value is greater than the value specified in high-limit.

To enable one of the two alarm conditions mentioned above, perform the following:
1. Configure notification-class to determine which Notification Class object will route objects for the

alarm. If you have configured Notification Class, Instance 0, then a value of 0 must be referenced.
2. Configure notify-type to determine whether the notification will be of an Alarm type or Event type.
3. Configure limit-enable to enable low-limit or high-limit alarming. This is accomplished by placing a

check into each associated limit type.
4. Configure event-enable to have the object send alarms for how alarms transition. For example, if you

wish to have the GPC send a notification when the object enters and exits the alarm thresholds, place
a check into the “To-Normal” and “To-OffNormal” boxes.

5. Configure your high-limit and low-limit properties accordingly.
6. Configure the time-delay and deadband properties. The time-delay property defines a threshold of

time (in seconds) where the present-value must exceed one of the limit properties in order for an
alarm/event condition to be considered. The deadband property defines an offset from low-limit or
high-limit that must be met in order for an alarm/event condition to be considered. For example, if
high-limit = 75.0, deadband = 2.0, and time-delay = 5, the present-value must exceed 77.0 for at
least 5 seconds before an alarm/event condition is considered.

10.2.5 CREATING BINARY INPUTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Binary Input objects are created by the technician when necessary, and are done in a dynamic manner.

To create an Binary Input object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (ML) Max Binary Inputs property. By default, this value is set to 0, indicating no Binary Input

objects exist.
3. Write the number of total Binary Input objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Binary Inputs, write a value of 10.

NOTE
When switching from an binary sensor type to an
analog sensor type, you must rediscover the
associated object. This process allows you to view
other properties associated to the object, such as
minimum and maximum scaled values. Refer to
NB-Pro User Manual for more information.
MatrixBBC Programmers Guide (10/5/2012) 10-7

UNIVERSAL INPUTS SECTION 10: INPUTS SETUP
4. Click Update Value in NB-Pro.

In order to see and view the newly created Binary Input objects, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

10.2.6 BINARY INPUT CONFIGURATION
An input that only has two signal states is considered a binary input. The most basic binary inputs are
switches or contacts. The switch is either on or off, the contact is closed or open. Inputs of this type have
many uses in a building automation system.

Despite only having two possible states, binary inputs require a bit more configuration than their analog
counterparts. Like an analog input, you should first check to make sure that the IVR jumper is in the correct
position on the STATbus Expansion Module. For a binary input, you want to set the jumper to the “R”
position. This is used because an open contact would have a very high resistance while a closed contact
would have a very low resistance, making it easier to detect the states.

For a binary sensor, you will set the (ST) Sensor Type property to Digital (0).

Binary inputs can take one of two states, but you can tell the controller how you want it to treat those
states. By setting the polarity property you can specify whether the object should display present-
value=1 for a high signal (normal operation, polarity=0) or a low signal (reverse operation, polarity=1).

Binary inputs also have a (RH) Run Hours property. This property tracks the amount of time (in hours) that
the sensed signal has been active.

NOTE
When switching from a analog sensor type to a
binary sensor type, you must rediscover the
associated object. This process allows you to view
other properties associated to the object, such as
minimum and maximum scaled values. Refer to
NB-Pro User Manual for more information.

CAUTION
INB-GPC products manufactured after April 2010
can only have their Universal Inputs configured to
perform pulse counting. Devices manufactured
before this date cannot perform pulse counting via
Universal Inputs.
10-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP UNIVERSAL INPUTS
10.2.7 CONFIGURING BINARY INPUT ALARM/EVENT NOTIFICATIONS
Binary Inputs can be configured to support alarm/event notifications. To enable alarming for an Binary
Inputs, set (EA) Enable Alarming = True. Once configured, additional properties will become available
that control the setup and configuration of how alarms/events are handled by the object.

Binary Inputs object alarm/events are triggered through defining the state in which the output is considered
to be in alarm.

To enable one of the two alarm conditions mentioned above, perform the following:
1. Configure notification-class to determine which Notification Class object will route objects for the

alarm. If you have configured Notification Class, Instance 0, then a value of 0 must be referenced.
2. Configure notify-type to determine whether the notification will be of an Alarm type or Event type.
3. Configure event-enable to have the object send alarms for how alarms transition. For example, if you

wish to have the GPC send a notification when the object enters and exits the alarm thresholds, place
a check into the “To-Normal” and “To-OffNormal” boxes.

4. Configure the time-delay property. The time-delay property defines a threshold of time (in seconds)
where the present-value must maintain the value in order for an alarm/event condition to be consid-
ered.
MatrixBBC Programmers Guide (10/5/2012) 10-9

DIGITAL INPUTS SECTION 10: INPUTS SETUP
10.3 DIGITAL INPUTS
Some STATbus Expansion Modules include an optically isolated digital input with dedicated pulse
counting features. These digital inputs are capable of detecting signals in the range 3-40 VDC peak to
peak or 2-29 VAC at 50/60 Hz. The digital inputs operate at a much higher frequency than a Universal
Input. This makes it possible for the input to not only detect whether a signal is on or off, but to detect rapid
pulses from the input. These pulses would be used primarily for demand metering applications as part of
an energy management system. Digital, pulse counting inputs can also be uses in flow metering
applications.

Regardless of the specific application, all pulse counting, digital devices operate on the same principle.
The device will generate a pulse for a given quantity of the value that is being measured for a demand
metering application. One pulse might correspond to one kilowatt-hour of power whereas, for a flow
metering setup, a single pulse might correspond to one gallon of liquid. The important piece of information
is the correlation between pulses and measured values.

10.3.1 CONFIGURING THE DIGITAL INPUTS
To configure a digital pulse counting input, you must set the (MD) Pulse Counter Mode property to “Rising
Edge”, “Falling Edge”, or “Both”. This tells the MatrixBBC that you want the input to operate as pulse
counter and not a simple digital input.

To correlate pulses with the value being measured, you must enter a value for the (SF) Scaled Factor
property. This multiplier specifies the amount of the measured quantity that is accumulated for each pulse.
For example, if a demand meter sends out a pulse for each kilowatt-hour of power used, then you would
set SF=1.0 since one pulse corresponds to one kilowatt-hour. If your input device were a flow meter that
sent a pulse for every ten gallons of liquid that passed through a pipe, then you would set SF=10.0.

The total number of pulses accumulated will be displayed in the (NP) Number of Pulses Accumulated
property. While this can be useful, you will be more concerned with the scaled pulse count stored in the
(SV) Scaled Value property. This is the value of the total number of pulses, NP, multiplied by the scaling
factor, SF. SV gives you the total amount of the value that you are measuring. For example, if the object
has accumulated 1250 (NP=1250) pulses and each pulse corresponds to 2.5 gallons of liquid that has
been pumped through a pipe (SF=2.5), then the total amount of liquid pumped (Neptis) would be
displayed in SV. In this case, SV would have a value of 3125, meaning that 3125 gallons of liquid had been
measured.
10-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP PIECEWISE CURVES
10.4 PIECEWISE CURVES
MatrixBBC products can accommodate non-linear sensors by using built-in tables to define the response
characteristics of an Analog Input sensor. Each table requires eleven points to define ten linear segments
which approximate the response of the sensor. The controller will perform a linear interpolation to ‘look up’
values that lie along an individual segment much like the calculations performed by the Scale objects.
Each of the Piecewise Curve objects contain the following properties: object_identifier, object_name,
object_type, X1, X2, X3, X4, X5, X6, X7, X8, X9, XA, XB, Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9, YA and YB.

10.4.1 CREATING PIECEWISE CURVES IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Piecewise Curve objects are created by the technician when necessary, and are done in a dynamic
manner.

To create a Piecewise Curve object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (M5) Max PWC property. By default, this value is set to 0, indicating no Piecewise Curve

objects exist.
3. Write the number of total Piecewise Curve objects you wish to have in the MatrixBBC. For example, if

you wish to have 5 Piecewise Curves, write a value of 5.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Piecewise Curve objects, you must re-discover the object list of
the MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the
Devices list in NB-Pro.

10.4.2 PIECEWISE CURVE CONFIGURATION
The object_name property stores the name of the object. This is a user definable string that can be used
to help identify the object or the sensor type it is approximating.

Properties (X1) Point 1’s value in % Full Scale through (XB) Point 11’s value in % Full Scale represent
the sensor readings for eleven chosen points on a sensor curve. The acceptable range for X1 through XB
depend on the chosen sensor type. For a voltage input, the 0-10 V input range is mapped to X1 through
XB values from 0 through 100. A current input, with a range of 0-20 mA, can have X1 through XB values
from 0 through 50. The 0-250 k range for a resistive input can have X1 through XB values from 0 through
25. The values of X1 through XB must be entered in increasing order (i.e. X1 < X2 < X3 etc.).

Properties (Y1) Point 1’s value in engineering units through (YB) Point 11’s value in engineering
units are the Engineering Unit values (e.g., 70 degrees, 72 degrees, etc.), corresponding to the sensor
readings entered into X1 through XB. These values, coupled with the corresponding sensor readings,
define the line segments which make up the piecewise curve

NOTE
The Piecewise Curve will only interpolate values
for input values between X1 and XB. If the input is
below X1, the Piecewise Curve will be pegged at
the value associated with X1. If the input is above
XB, the Piecewise Curve will be pegged at the
value associated with X1.
MatrixBBC Programmers Guide (10/5/2012) 10-11

PIECEWISE CURVES SECTION 10: INPUTS SETUP
10.4.3 PIECEWISE CURVES FOR VOLTAGE INPUTS
To program a piecewise curve for a nonlinear sensor, you need to know the response characteristics of the
sensor. These response characteristics are usually supplied by the manufacturer and may be in the form
of a graph or table. Figure 10-1 shows an example of what a curve for a temperature sensor may look
like. Though the sensor response could extend beyond this range, you will get more accurate results if you
limit the range of your Piecewise Curve to the range of values you expect to see from the sensor. Figure
10-1 only contains the portion of the sensor’s response that would be needed for zone temperature
monitoring.

Once you have the response data, in either graph or table form, you must choose the points which define
the line segments that approximate the response curve in the expected response region. When choosing
the points to use, you can use fewer points in areas of the curve that are mostly linear and concentrate the
points to better approximate the more non-linear portions of the response. In Figure 10-1, you can see that
more points are chosen near the ‘bends’ in the characteristic response curve.

Figure 10-1: An Example of a Sensor Response Curve

From the graph, the following values are selected to represent the curve:

Table 10-1 : Sensor Response Points

Voltage Temperature (°F)

1.00 50

1.70 54

1.90 56

2.10 61

2.15 67

2.20 75

°F

1V

2V

3V

4V

50 60 70 80 90

VOLTAGE

(61, 2.1)
(56, 1.9)

(54,1.7)

(50,1)

(67, 2.15)(75, 2.2)

(77, 2.3)

(82, 2.45)
(85, 2.6)

(88, 3.25)

(90, 4)
10-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP PIECEWISE CURVES
Next you must convert the voltage values into a percentage of full scale to be used to define the x-
coordinates of your piecewise curve. Since the voltage input has a range of 0-10 V, each volt measured
corresponds to ten percent of the full scale. The formula for the percentage of full scale output for a voltage
sensor is simply:

The calculated percentages correspond to X1 through XB and the temperature reading correspond to Y1
through YB. For the sensor described above, this gives the following assignments:

10.4.4 PIECEWISE CURVES FOR CURRENT INPUTS
Where the full scale of the voltage sensor is represented internally as a full 0 to 100%, a current sensor is
represented in slightly less than 50% of the full scale readable by the controller. This means that the 0 to
20 mA full scale sensor reading range is mapped to the range of 0 to slightly less than 50% of the full scale
readable by the controller. Calculating the Piecewise Curve for a current input is the same as for the

2.30 77

2.45 82

2.60 85

3.25 88

4.00 90

Table 10-2 : Assigning Sensor Response Points to the Piecewise Curve

% Full Scale Temperature (°F)

X1 10.0 50 Y1

X2 17.0 54 Y2

X3 19.0 56 Y3

X4 21.0 61 Y4

X5 21.5 67 Y5

X6 22.0 75 Y6

X7 23.0 77 Y7

X8 24.5 82 Y8

X9 26.0 85 Y9

XA 32.5 88 YA

XB 40.0 90 YB

Table 10-1 : Sensor Response Points

Voltage Temperature (°F)

% Full Scale Voltage 10=
MatrixBBC Programmers Guide (10/5/2012) 10-13

PIECEWISE CURVES SECTION 10: INPUTS SETUP
resistive input, except that you would instead apply a different formula to calculate the percentage of full
scale. Here, 1 mA read in from the sensor corresponds to 2.49% of the full scale. You can simply multiply
the current value from the sensor’s characteristic response, or you can use the following formula to
calculate the percentage of full scale:

The values for Y1 through YB are entered in Engineering Units in exactly the same way as for the voltage
sensor.

10.4.5 PIECEWISE CURVES FOR RESISTANCE INPUTS
Like the current sensor, the resistance sensor is represented inside the controller a fraction of the full scale
range possible in the controller. The 0 to 250 k resistance range is represented internally as 0 to slightly
less than 25% of the full scale readable by the controller. Calculating the a Piecewise Curve for a resistive
input is also slightly different than for the voltage or current sensors because the controller measures the
voltage drop across the input and that response is inherently non-linear. Because of this, there is no
simple multiplier that can be used to convert resistance to full scale percentage as for the voltage or
current sensors. Instead, you will have to use the following equation:

The calculated full scale values are then entered into X1 through XB. The values for Y1 through YB are
entered in Engineering Units in exactly the same way as for the voltage and current sensors.

% Full Scale Current mA 249
100

--=

% Full Scale 25
Resis ce tan

Resis ce tan 20000+
---=
10-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 10: INPUTS SETUP PIECEWISE CURVES
MatrixBBC Programmers Guide (10/5/2012) 10-15

PIECEWISE CURVES SECTION 10: INPUTS SETUP
10-16 MatrixBBC Programmers Guide (10/5/2012)

SECTION 11: OUTPUTS SETUP

This section provides general information regarding setup of Analog Output and Binary Output objects.
The MatrixBBC supports up to a maximum of 72 Analog Output and 72 Digital Output objects.
IN THIS SECTION
Outputs Overview..11-3
 Programming Concepts and Techniques ...11-3
 Make the object-name Unique ..11-3
 Enable Alarming When Needed..11-3
Analog Outputs ...11-4
 Creating Analog Outputs in the MatrixBBC..11-4
 Configuring Minimum and Maximum Thresholds...11-4
 Configuring Alarm/Event Notifications..11-4
 AutoStuff Configuration ..11-5
 Other Logic Properties ...11-6
Binary Outputs ..11-7
 Creating Binary Outputs in the MatrixBBC...11-7
 Configuring Minimum Off/On Times...11-7
 Configuring Polarity..11-7
 Configuring State Texts ..11-7
 Configuring Alarm/Event Notifications..11-8
 AutoStuff Configuration ..11-8
 Other Logic Properties ...11-8
MatrixBBC Programmers Guide (10/5/2012) 11-1

SECTION 11: OUTPUTS SETUP
11-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 11: OUTPUTS SETUP OUTPUTS OVERVIEW
11.1 OUTPUTS OVERVIEW
NB-GPC product models support both Analog and Binary Outputs for direct equipment control using either
on-board I/O or expansion modules via STATbus. While the total amount of outputs per GPC will depend
on the model number, setup and configuration of outputs is exactly the same across the product family.
The table below provides information on-board I/O support, as well as expansion support.

11.1.1 PROGRAMMING CONCEPTS AND TECHNIQUES

11.1.1.1 MAKE THE OBJECT-NAME UNIQUE
The GPC supports the ability to allow each object’s name to be assigned a custom value. By default, the
software uses generic names for objects. For ease of programming and flow, it is strongly recommended
that you change the object-name of any used object. This allows you not only to keep track of which
objects have been used, but also allows you to easily troubleshoot your linked logic.

11.1.1.2 ENABLE ALARMING WHEN NEEDED
All Output objects optionally support alarming. When alarming is disabled (EA) Enable Alarming =
Disabled (0), less properties will be displayed in NB-Pro, allowing the objects to be interpreted easier
during programming.
MatrixBBC Programmers Guide (10/5/2012) 11-3

ANALOG OUTPUTS SECTION 11: OUTPUTS SETUP
11.2 ANALOG OUTPUTS
Analog Outputs are used to provide proportional control signals in either 0-10vdc or 0-20mA output form.

11.2.1 CREATING ANALOG OUTPUTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Analog Output objects are created by the technician when necessary, and are done in a dynamic manner.

To create an Analog Output object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MM) Max Analog Outputs property. By default, this value is set to 0, indicating no Analog

Output objects exist.
3. Write the number of total Analog Output objects you wish to have in the MatrixBBC. For example, if

you wish to have 10 Analog Outputs, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Analog Output objects, you must re-discover the object list of
the MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the
Devices list in NB-Pro.

11.2.2 CONFIGURING MINIMUM AND MAXIMUM THRESHOLDS
Analog Outputs can be software configured to accept a minimum or maximum value. Additionally, the
output itself can be mathematically scaled to establish a percentage of the maximum voltage or current.

The (MN) Minimum Scaled Value and (MX) Maximum Scaled Value properties specify the minimum and
maximum scaled values for the outputs, expressed as a percentage of the full scale. min-pres-value and
max-pres-value are used to specify the display range for the present-value.

For example, if the present-value is to be displayed as a percentage (0-100%) of a 10 VDC output range,
set min-pres-value to 0 and max-pres-value to 100 (a display range of 0%-100% of full scale). Then set
(MN) Minimum Scaled Value to 0.0 and (MX) Maximum Scaled Value to 100.0, so that when present-
value = 0 represents 0.0% of the output range and present-value = 100 represents 100.0% of the output
range.

11.2.2.1 2-10VDC SCALING
If the output device in the previous example only operated from 2-10 V instead of 0-10 V, you would simply
change the value of (MN) Minimum Scaled Value to be 20.0 because 2 V is 20% of the 10 V maximum.
Everything else from the previous example would remain the same.

11.2.3 CONFIGURING ALARM/EVENT NOTIFICATIONS
Analog Outputs can be configured to support alarm/event notifications. To enable alarming for an Analog
Output, set (EA) Enable Alarming = True. Once configured, additional properties will become available
that control the setup and configuration of how alarms/events are handled by the object.

Analog Output objects can be configured to trigger one of the two following conditions:
. Low Limit - occurs when present-value is less than the value specified in low-limit.
. High Limit - occurs when present-value is greater than the value specified in high-limit.

To enable one of the two alarm conditions mentioned above, perform the following:
1. Configure notification-class to determine which Notification Class object will route objects for the

alarm. If you have configured Notification Class, Instance 0, then a value of 0 must be referenced.
2. Configure notify-type to determine whether the notification will be of an Alarm type or Event type.
11-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 11: OUTPUTS SETUP ANALOG OUTPUTS
3. Configure limit-enable to enable low-limit or high-limit alarming. This is accomplished by placing a
check into each associated limit type.

4. Configure event-enable to have the object send alarms for how alarms transition. For example, if you
wish to have the GPC send a notification when the object enters and exits the alarm thresholds, place
a check into the “To-Normal” and “To-OffNormal” boxes.

5. Configure your high-limit and low-limit properties accordingly.
6. Configure the time-delay and deadband properties. The time-delay property defines a threshold of

time (in seconds) where the present-value must exceed one of the limit properties in order for an
alarm/event condition to be considered. The deadband property defines an offset from low-limit or
high-limit that must be met in order for an alarm/event condition to be considered. For example, if
high-limit = 75.0, deadband = 2.0, and time-delay = 5, the present-value must exceed 77.0 for at
least 5 seconds before an alarm/event condition is considered.

11.2.4 AUTOSTUFF CONFIGURATION
AutoStuff is used to allow the Analog Output object to control based on another value within the NB-GPC.
In previous generations of the GPC, Analog Outputs were directly controlled by PID Control Loops or
custom SPL. Using AutoStuff, you can define what source will control the Analog Output by defining an
object-property reference. This results in the Analog Output “pulling in” the value of the referenced object-
property and “stuffing it” into priority array.

AutoStuff consists of configuring the following three properties:
. (O1) AutoStuff Input Object - specifies the object ID portion of an object-property reference where

the GPC will receive a control value from.
. (P1) AutoStuff Input Property - specifies the property of an object-property reference where the GPC

will receive a control value from.
. (Q1) AutoStuff Mode/Priority - specifies the level of priority-array that the AutoStuff function will use

within the Analog Output. A value of 255 disables AutoStuff.

In the example shown below, Analog Output 1 is configured to pull and stuff the present-value of a PID
Loop.

Figure 11-1 Auto-Stuff Example - Analog PID 1 to Analog Output 1
MatrixBBC Programmers Guide (10/5/2012) 11-5

ANALOG OUTPUTS SECTION 11: OUTPUTS SETUP
11.2.5 OTHER LOGIC PROPERTIES
Analog Output objects include some additional logic properties which may be useful when programming
applications. These properties are explained below

11.2.5.1 ACTUAL OUTPUT VOLTAGE AND ACTUAL OUTPUT CURRENT
(OV) Actual Output Voltage and (OC) Actual Output Current defines the actual output value being sent
by the GPC controller. This value can be cross-referenced to the present-value of the Analog Output
object for I/O troubleshooting.

11.2.5.2 UPDATE THRESHOLD
(UT) Update Threshold defines how often (in seconds) the GPC updates the actual output. By default,
this value is set to 0.0, which commands the GPC to update the output immediately.

11.2.5.3 RUN HOURS
(RH) Run Hours specifies how many hours the Analog Output has been outputting an actual signal.
11-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 11: OUTPUTS SETUP BINARY OUTPUTS
11.3 BINARY OUTPUTS
Binary Outputs are used to provide on/off type control signals through use of on-board triacs or expansion
outputs which can be either triac or relay based.

11.3.1 CREATING BINARY OUTPUTS IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
Binary Output objects are created by the technician when necessary, and are done in a dynamic manner.

To create an Analog Output object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MN) Max Binary Outputs property. By default, this value is set to 0, indicating no Binary

Output objects exist.
3. Write the number of total Binary Output objects you wish to have in the MatrixBBC. For example, if you

wish to have 10 Binary Outputs, write a value of 10.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Binary Output objects, you must re-discover the object list of
the MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the
Devices list in NB-Pro.

11.3.2 CONFIGURING MINIMUM OFF/ON TIMES
Binary Outputs can be programmed to maintain on/off signals through use of minimum-off-time and
minimum-on-time. These properties define how long, in seconds, a binary output will maintain either
remain off or on after it has been commanded to do so.

These minimum timers utilizes BACnet’s Command Prioritization mechanism to control the outputs in this
manner. By virtue of the standard, this process uses priority level six (6).

For example, when the output is commanded off by writing at a priority level of 7 through16, it will stay off
for the minimum period of time specified in minimum-off-time. If an attempt is made to command the output
on, the output will remain off until the time period has expired.

If the output has been commanded at a priority higher than level six (6), the output commanded at a lower
priority will automatically turn on/off.

11.3.3 CONFIGURING POLARITY
The polarity property defines the relationship between the physical state of the output and the software
state reflected by present-value. By default, polarity is set to Normal (0). In this state, when the physical
state of the output is inactive, the present-value will indicate a value of inactive; and when the physical
state of the output is active, the present-value will indicate a value of active. If the polarity were to be
switched to Reverse (1), present-value will indicate an Inactive status when the physical output is active,
whereas present-value would indicate an Active status when the physical output is inactive.

11.3.4 CONFIGURING STATE TEXTS
For ease of configuring advanced operator workstations, Binary Outputs contain state texts which can be
used to define the state of a Binary Output when it is inactive or active. These state text properties,
inactive-text and active-text, define the state text for the Binary Output. Each state text can be up to 32
characters in length.
MatrixBBC Programmers Guide (10/5/2012) 11-7

BINARY OUTPUTS SECTION 11: OUTPUTS SETUP
11.3.5 CONFIGURING ALARM/EVENT NOTIFICATIONS
Binary Outputs can be configured to support alarm/event notifications. To enable alarming for an Binary
Output, set (EA) Enable Alarming = True. Once configured, additional properties will become available
that control the setup and configuration of how alarms/events are handled by the object.

Binary Output object alarm/events are triggered through defining the state in which the output is
considered to be in alarm.

To enable one of the two alarm conditions mentioned above, perform the following:
1. Configure notification-class to determine which Notification Class object will route objects for the

alarm. If you have configured Notification Class, Instance 0, then a value of 0 must be referenced.
2. Configure notify-type to determine whether the notification will be of an Alarm type or Event type.
3. Configure event-enable to have the object send alarms for how alarms transition. For example, if you

wish to have the GPC send a notification when the object enters and exits the alarm thresholds, place
a check into the “To-Normal” and “To-OffNormal” boxes.

4. Configure the time-delay property. The time-delay property defines a threshold of time (in seconds)
where the present-value must maintain the value in order for an alarm/event condition to be consid-
ered.

11.3.6 AUTOSTUFF CONFIGURATION
AutoStuff is used to allow the Binary Output object to be controlled based on another value within the NB-
GPC. In previous generations of the GPC, Binary Outputs were directly controlled by Thermostatic
Control Loops or custom SPL. Using AutoStuff, you can define what process controls the Binary Output by
defining an object-property reference. This results in the Binary Output “pulling in” the value of the
referenced object-property and “stuffing it” into priority array.

AutoStuff consists of configuring the following three properties:
. (O1) AutoStuff Input Object - specifies the object ID portion of an object-property reference where

the GPC will receive a control value from.
. (P1) AutoStuff Input Property - specifies the property of an object-property reference where the GPC

will receive a control value from.
. (Q1) AutoStuff Mode/Priority - specifies the level of priority-array that the AutoStuff function will use

within the Binary Output. A value of 255 disables AutoStuff.

The AutoStuff function also includes helpful status feedback for troubleshooting purposes. This status is
provided through the (AF) AutoStuff Feedback property.

11.3.7 OTHER LOGIC PROPERTIES
Analog Output objects include some additional logic properties which may be useful when programming
applications. These properties are explained below.

11.3.7.1 ACTUAL OUTPUT STATE
(OU) Actual Output State defines the physical output value being sent by the GPC controller. This value
can be cross-referenced to the present-value of the Binary Output object for I/O troubleshooting.

11.3.7.2 PULSE WIDTH
(PW) Pulse Width when Output Is On defines how often (in seconds) the Binary Output will pulse
between on and on states to perform pulse width control when the output is driven to be active.

11.3.7.3 RUN HOURS
(RH) Run Hours specifies how many hours the Analog Output has been outputting an actual signal.
11-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 11: OUTPUTS SETUP BINARY OUTPUTS
MatrixBBC Programmers Guide (10/5/2012) 11-9

BINARY OUTPUTS SECTION 11: OUTPUTS SETUP
11-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS

This section provides information regarding control loop objects that reside in the MatrixBBC, including
Analog PID Control Loops, Pulse Pair PID Control Loops, and Thermostatic Control Loops. The
MatrixBBC supports a maximum of 64 objects per control loop type.
IN THIS SECTION
Control Loops Overview... 12-3
 Programming Concepts and Techniques .. 12-3

 Make the object-name Unique.. 12-3
Analog Output Control Loops... 12-4
 Basic Setup... 12-4
 Proportional Control Setup.. 12-5
 Deadband Configuration ... 12-6
 Reset Control Setup.. 12-8
 Interlock Setup ...12-11
 Soft Start Setup ..12-11
 STAT Override Offset and Adjustment ...12-11
 Enabling the Control Loop .. 12-12
Pulse-Pair PID Control ... 12-13
 Basic Setup... 12-13
 Proportional Control Setup.. 12-14
 Deadband Configuration ... 12-15
 Reset Control Setup.. 12-17
 Calibration... 12-20
 STAT Override Offset and Adjustment .. 12-22
 Enabling the Control Loop .. 12-23
Thermostatic Control.. 12-24
 Basic Setup... 12-24
 Configuring Loop Parameters ... 12-25
 STAT Override Offset and Adjustment .. 12-26
 Enabling the Control Loop .. 12-26
MatrixBBC Programmers Guide (10/5/2012) 12-1

SECTION 12: CONTROL LOOPS
12-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS CONTROL LOOPS OVERVIEW
12.1 CONTROL LOOPS OVERVIEW
The MatrixBBC provides the ability to create loop objects which can be setup to provide control to outputs
that may be connected to the on-board STATbus port. Control Loops can be programmed to directly affect
the status of analog or binary output or even a software parameter. By nature, all control loops are
software based and are not internally linked to any specific hardware output (linking is achieved by using
Netmaps, Remaps, or the AutoStuff feature of Output objects).

Three types of control loop objects are provided within the MatrixBBC, including:
1. Analog PID - uses standard PID control to provide an analog signal value.
2. Pulse-Pair - uses standard PID control to provide on/off floating point control signals.
3. Thermostatic - uses enhanced boolean logic (TSTAT logic) to provide an on/off control signal.

An explanation of each control loop object type, along with notes on setup and configuration are provided
in the sections below.

12.1.1 PROGRAMMING CONCEPTS AND TECHNIQUES
To enhance your programming experience, the following are a few helpful concepts and techniques to
keep in mind when using these objects.

12.1.1.1 MAKE THE OBJECT-NAME UNIQUE
The MatrixBBC supports the ability to allow each object’s name to be assigned a custom value. By default,
the software uses generic names for objects. For ease of programming and flow, it is strongly
recommended that you change the object-name of any used control loop objects. This allows you not only
to keep better track of which objects have been used, but also allows you to easily troubleshoot your linked
logic.
MatrixBBC Programmers Guide (10/5/2012) 12-3

ANALOG OUTPUT CONTROL LOOPS SECTION 12: CONTROL LOOPS
12.2 ANALOG OUTPUT CONTROL LOOPS
Proportional + Integral + Derivative (PID) represents a method of control that controls equipment
according to a set point in proportion to the value of a measured variable. It accounts for the amount of
error (difference between the measured variable and the set point) and the continued presence of error.

12.2.1 BASIC SETUP
To initially use a control loop, you must first setup and configure basic properties of the control loop.

12.2.1.1 CONTROL SIGN AND OUTPUT LIMITS
The (SG) Control Sign property specifies the control action for the control loop. When SG = 0 (normal), a
positive error causes an increase in output. When SG = 1 (reverse), a positive error causes a decrease in
output. This point determines the response of the loop output to the kind of error. If the output action is to
be increased (toward max) when the error is positive, set SG to normal (0). If the output action is to be
decreased (toward min) for positive error, set SG to reverse (1). (Property SG is also used during schedule
control)

The minimum and maximum limits of the control loop may also be configured if desired. The (OL)
Minimum Output Limit and (OH) Maximum Output Limit properties define the minimum and maximum
limits of the output range for the control loop. The present-value will be scaled between the limits you
have defined.

12.2.1.2 MEASURED VARIABLE CONFIGURATION
The (IO) Input Object and (IP) Input Property properties specify the object and property to be used as
the loop measured variable. It specifies the input to be used for the control loop’s measured variable. Any
object property within the MatrixBBC can be used as the measured variable by configuring these
properties appropriately.

When the control loop is enabled, (IV) Input’s Present Value will reflect the current value of the loop
measured variable.

12.2.1.3 SETPOINT CONFIGURATION
Each control loop contains four setpoint properties, defining the control setpoint that is used for a specific
schedule mode. The setpoint is expressed in the same kind of measurement units (engineering units) that
the measured variable uses (e.g., degrees, cfm, inches of WC, etc.). This value is used with the setup/
setback value and any reset to calculate the actual setpoint used to control the loop. If you intend to
configure your MatrixBBC to perform four-mode scheduling (see Section 8 - Scheduling for more details),
you may define a setpoint for each occupancy mode (Warmup, Occupied, Unoccupied, Night Setback).

. (US) Unoccupied Setpoint defines the control setpoint for Unoccupied periods.

. (OS) Occupied Setpoint defines the control setpoint for Occupied periods.

. (WS) Warmup Setpoint defines the control setpoint for Warmup periods.

. (NS) Night Setback Setpoint defines the control setpoint for Night Setback periods.

When the control loop is later enabled (using (CE) Enable Control Loop), the (CS) Calculated Control
Setpoint will reflect which setpoint is currently active.

The (SM) Schedules to Follow property allows control loop to reference a schedule and transition
through programmed set points appropriately. Each bit in SM corresponds to one of up to 10 available
schedules. These bits are summarized in Table 12-1.
12-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS ANALOG OUTPUT CONTROL LOOPS
 If you do not want to use schedule control, set all of the bits in SM to 0, and configure only the (OS)
Occupied Setpoint for control.

12.2.2 PROPORTIONAL CONTROL SETUP
The (PB) Proportional Control Band specifies the input variable range over which the output value is
proportional to the error value (i.e., changes in the measured variable result in proportional changes in the
output signal). The proportional band is centered around setpoint for the loop. This point is expressed in
the same kind of measurement units (engineering units) that the measured variable uses. For example:
degrees, cfm, inches of WC.

To determine PB, first decide how closely the loop must control to the setpoint. For instance, if the setpoint
is 72F, then an acceptable control range might be within two degrees of the setpoint. This control range
can be expressed as a band centered on the setpoint: from 70 to 74, or 4 degrees proportional band
(PB). Refer to Figure 12-1 and Figure 12-2.

For normal acting control loops (see Figure 12-1), the (PO) Percent Output property is set to maximum
output when the input variable equals the setpoint plus half of the proportional band (CS + PB/2). The
percent output is set to minimum output when the input variable equals the setpoint minus half of the
proportional band (CS - PB/2). These associations are reversed for reverse acting control loops. PO will
be midway between minimum and maximum output when the measured variable is equal to the control
setpoint CS. The opposite would be true for reverse acting control loop as shown in Figure 12-2.

Table 12-1 : Schedules to Follow

SM bit Schedule

0 Schedule 1

1 Schedule 2

2 Schedule 3

3 Schedule 4

4 Schedule 5

5 Schedule 6

6 Schedule 7

7 Schedule 8

8 Schedule 9

9 Schedule 10
MatrixBBC Programmers Guide (10/5/2012) 12-5

ANALOG OUTPUT CONTROL LOOPS SECTION 12: CONTROL LOOPS
Figure 12-1: Proportional Band for Normal Acting Control (SG = 0)

Figure 12-2: Proportional Band for Reverse Acting Control (SG = 1)

Proportional only control produces cycling, and its performance changes when the measured environment
changes. The way to eliminate cycling and to compensate for load changes is to use integral action, the “I”
part for PID control.

12.2.3 DEADBAND CONFIGURATION
The (DB) Desired Control Deadband property specifies the deadband within the proportional control
band in which the output remains constant at a point midway between maximum output and minimum
output. By specifying a deadband that is greater than or equal to the resolution of the loop measured
variable, you eliminate the possibility of cycling around the setpoint. The value of the deadband should

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

Output

OH

OL

Control Loop

Variable

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

Output

OH

OL

Control Loop

Variable
12-6 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS ANALOG OUTPUT CONTROL LOOPS
never exceed the proportional band. If the deadband is greater than the proportional band, then the control
loop will not have proportional control.

The deadband is used to specify an input variable range within the proportional band. The size of the
deadband should be based on the loop measured variable. When the value of the measured variable is
within this dead band, the output signal remains constant at the midpoint of the minimum/maximum range.

The point that deadband is centered on tone of the four defined set points to create the actual control dead
band. When the value of the loop measured variable is within DB/2 of the setpoint, the loop assumes that
it has reached the setpoint. Refer to Figure 12-3.

Figure 12-3: Normal Acting (above) and Reverse Acting (below), Proportional Control Output Response
Showing a Dead Band Centered Around the Setpoint (SP)

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

OUTPUT

MX

MN

Control Loop

Variable

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

OUTPUT

MX

MN

Control Loop

Variable
MatrixBBC Programmers Guide (10/5/2012) 12-7

ANALOG OUTPUT CONTROL LOOPS SECTION 12: CONTROL LOOPS
By entering a value in deadband that is greater than the resolution of the measured variable sensor, you
create a deadband that allows the loop to effectively reach setpoint. Be sure that the deadband selected
does not exceed the size of the proportional band.

12.2.4 RESET CONTROL SETUP
The (MR) Maximum Amount to Reset Setpoint property specifies the maximum amount to reset the
loop setpoint (SP) based on when reset is being used. Property CS takes into account the use of the
maximum reset specified in MR.

The (RC) Reset Variable and (RA) Reset Attribute specify the object and property to be used as the
Reset Variable.

The (RS) Reset Setpoint property specifies the value at which the reset action begins. When the value of
the reset variable exceeds RS, reset action will be used in determining the calculated setpoint. Just as SP
is the proportional control setpoint for the measured variable specified in IC and IA, RS is the reset control
setpoint for the value of the reset variable selected by RC and RA.

The (RL) Reset Limit property specifies the value at which maximum reset is used. When the value of the
reset variable is equal to RL, the maximum reset (MR) is used in determining the calculated setpoint (CS).

The relationship between RL and RS, as well as the sign (+ or) of MR, determines how changes in the
reset variable specified by RC and RA affect the calculated control setpoint CS. Refer to Figure 12-4.

CAUTION
Never change DB to a value greater than half of the
proportional band PB. Doing so will eliminate the
effects of PID control, resulting in on/off control.
12-8 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS ANALOG OUTPUT CONTROL LOOPS
Figure 12-4: Four Forms of Reset Action

With appropriate values entered for these properties, the loop will provide simple closed loop feedback
proportional control. This means that the actual measured performance of the control (from the measured
variable input) is fed back to the controller and is compared with the effective setpoint for the loop. Any
difference between the actual value of the measured variable and effective setpoint values is called error.

One problem with proportional only control is the changes in loop performance that occur when the
condition being measured by the input sensor changes (e.g., the measured temperature changes when a
door is opened and the room or space is flooded with cold air). As the loop environment changes, the
proportional only control loop begins to cycle around an offset from the setpoint. Figure 12-5 illustrates the
performance of a typical loop under proportional only control.

SP

SP+MR

RL<RS

MR>0

RL RS
RC

1

SP

SP-MR

RL>RS

MR<0

RL

RL

RS

RS

RC

SP

SP+MR

RL>RS

MR>0

RLRS

RC

2

3

SP

SP-MR

RL<RS

MR<0

RC

4

MatrixBBC Programmers Guide (10/5/2012) 12-9

ANALOG OUTPUT CONTROL LOOPS SECTION 12: CONTROL LOOPS
Figure 12-5: Proportional Only Control

Rather than responding exclusively to the loop error from moment to moment as is the case with
proportional action, integral action is based on a summation of the error that has occurred over some
period. This error sum is used to reset, or modify, the response of the control loop (output) based on a
running average of the error. The amount of time over which the error averaging is accumulated is called
the reset period.

The (RP) Reset Period property specifies the reset period (in seconds) over which the error history is
accumulated. If RP = 10 seconds with a constant error of 2.0, then the error history would increase by 0.2
every second. In five seconds, the error history would be 1.0. At the end of ten seconds, the error history
would be 2.0. Setting RP to 0 disables integral action making the loop proportional only. The longer RP is,
the less effect it has on the control response. Figure 12-6 shows the response of a typical control loop
when integral action is used in addition to proportional action (PI control). A value of 0 disables the reset
period.

Figure 12-6: Proportional + Integral (PI) Control

At the start-up of the loop or following a change in setpoint (see Figure 12-6), the error is fairly large.
Proportional action causes the loop output to accelerate toward the setpoint. However by the time the loop
response reaches the setpoint value, it has gained inertia from the preceding proportional action. This
causes the loop to overshoot the setpoint. As the loop exceeds the setpoint moving toward its first peak,

+

-

PB Error

TIME

SP

+

-

PB Error

TIME

SP
12-10 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS ANALOG OUTPUT CONTROL LOOPS
the error sum is accumulating. This slows down the acceleration, eventually causing the downturn in
response.

As the error falls and then drops below the setpoint, the error sum will be reduced because now the error is
in the opposite direction. The cycle continues in diminishing peaks until it finally converges at the setpoint
as shown in Figure 12-6.

The proportional control action of the loop has a major effect on integral action. Increasing PB results in a
smaller integral effect for a given value of RP. In general, decreasing the proportional band, PB, will
increase the magnitude of the changes in PO.

Several important factors may not be obvious to inexperienced users of these DDC techniques.

First, whenever the error falls outside of the proportional band - that is, PB/2 from the setpoint, two
important things happen: the controller’s output is fully pegged in the appropriate direction, and the error
sum stops accumulating. The control produces its maximum output because it must bring the error within
the proportional band again. The error sum stops accumulating so that it does not “wind up” a massive
error sum that would take many control cycles to dissipate. This feature is called anti-reset windup.

Anti reset windup also makes the loop recover quickly when it reenters the proportional band. Another
feature of anti reset windup is that the error history is limited to PB/2 because that is all that required to
produce maximum output. Additional error accumulation would only slow down loop recovery.

To quicken loop response while eliminating overshoot, derivative action must be taken. Derivative action
takes into account the rate of change in error and allows the loop to counter the effects of the error’s rate of
change on the control output. To find the change in error, subtract the current error (read every second by
the PID loop) from the previous second’s error. A percentage of this change (specified by RT) becomes the
derivative contribution to the PID output.

The (RT) Derivative Rate property specifies a percentage of change in error that is to be used in
calculating PO. The value is specified in percent per second. The point RT can have any value from 0.0 to
25.5%/second.

12.2.5 INTERLOCK SETUP
Interlocking allows the control loop to be enabled or disabled based on a status input. The status input is
configured using properties (OO) Interlock Override Object and (OP) Interlock Override Property.
When the defined input is a true signal (value of 1), the PID Control Loop will be disabled, else, remains
active. The current value of the referenced interlock object property can be monitored from the PID Control
Loop through property (OV) Interlock Override Objects Present State.

12.2.6 SOFT START SETUP
The (SR) Soft Start Ramp property specifies the maximum percentage change per minute for the
associated output under he following conditions: when the controller is initially powered up or reset; upon
transitions from unoccupied to occupied mode, upon cancellation of an interlock failure or fire condition, or
when a control loop is initially enabled. These situations can cause the control loop to peg to 100% which
can cause the output to spike and, in turn, could lead to equipment damage. To prevent this, the output will
be limited to changing SR percent per minute.

12.2.7 STAT OVERRIDE OFFSET AND ADJUSTMENT
In order for a setpoint adjustment to be made from a STAT, the Universal Input that referenced a connected
SmartSTAT must be linked to a control loop that adjusts the loop. Once linked, three properties are used to
MatrixBBC Programmers Guide (10/5/2012) 12-11

ANALOG OUTPUT CONTROL LOOPS SECTION 12: CONTROL LOOPS
establish adjustment parameters between the STAT and the control loop. Three properties control the
setpoint offset, display the current position of the override offset, and displays the remaining time duration
for adjustment. These properties (MO) STAT Maximum Override Offset specifies the degree offset
adjusted each time a user presses the up or down arrow from a specific thermostat. (CO) Stat Current
Override Offset displays the current adjust setpoint position of the linked STAT. Finally, (OR) STAT
Override Time Remaining displays the amount of time left for the effective setpoint adjustment made
from the linked STAT.

12.2.8 ENABLING THE CONTROL LOOP
The (CE) Enable Control Loop? property enables and disables the PID loop. When CE = 0, the loop
output is not updated but may be set manually. When CE = 1, the loop output is updated by the PID control
loop and the corresponding analog output is controlled.

The (DL) Demand Load property indicates the amount by which CS differs from the loop measured
variable.
12-12 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS PULSE-PAIR PID CONTROL
12.3 PULSE-PAIR PID CONTROL
Similar to an Analog PID Control Loop, Pulse Pair PID Control loops are used to control such devices as
fans, pumps, and blowers. Each loop performs either PI or PID control while providing calibration and
alarming functions.

In floating point control applications, each floating point control object controls the position of a motor
actuator using two digital outputs (an increase output and a decrease output).

12.3.1 BASIC SETUP
To initially use a control loop, you must first setup and configure basic properties of the control loop.

12.3.1.1 CONTROL SIGN AND OUTPUT LIMITS
The (SG) Control Sign property specifies the control action for the control loop. When SG = 0 (normal), a
positive error causes an increase in output. When SG = 1 (reverse), a positive error causes a decrease in
output. This point determines the response of the loop output to the kind of error. If the output action is to
be increased (toward max) when the error is positive, set SG to normal (0). If the output action is to be
decreased (toward min) for positive error, set SG to reverse (1). (Property SG is also used during schedule
control)

12.3.1.2 MEASURED VARIABLE CONFIGURATION
The (IO) Input Object and (IP) Input Property properties specify the object and property to be used as
the loop measured variable. It specifies the input to be used for the control loop’s measured variable. Any
object property within the MatrixBBC can be used as the measured variable by configuring these
properties appropriately.

When the control loop is enabled, (IV) Input’s Present Value will reflect the current value of the loop
measured variable.

12.3.1.3 SETPOINT CONFIGURATION
Each control loop contains four setpoint properties, defining the control setpoint that is used for a specific
schedule mode. The setpoint is expressed in the same kind of measurement units (engineering units) that
the measured variable uses (e.g., degrees, cfm, inches of WC, etc.). This value is used with the setup/
setback value and any reset to calculate the actual setpoint used to control the loop. If you intend to
configure a MatrixBBC Schedule to perform four-mode scheduling (see Section 4 - Scheduling for more
details), you may define a setpoint for each occupancy mode (Warmup, Occupied, Unoccupied, Night
Setback).

. (US) Unoccupied Setpoint defines the control setpoint for Unoccupied periods.

. (OS) Occupied Setpoint defines the control setpoint for Occupied periods.

. (WS) Warmup Setpoint defines the control setpoint for Warmup periods.

. (NS) Night Setback Setpoint defines the control setpoint for Night Setback periods.

When the control loop is later enabled (using (CE) Enable Control Loop), the (CS) Calculated Control
Setpoint will reflect which setpoint is currently active.

The (SM) Schedules to Follow property allows control loop to reference a schedule and transition
through programmed set points appropriately. Each bit in SM corresponds to one of up to 10 available
schedules. These bits are summarized in Table 12-1.
MatrixBBC Programmers Guide (10/5/2012) 12-13

PULSE-PAIR PID CONTROL SECTION 12: CONTROL LOOPS
 If you do not want to use schedule control, set all of the bits in SM to 0, and configure only the (OS)
Occupied Setpoint for control.

12.3.2 PROPORTIONAL CONTROL SETUP
The (PB) Proportional Control Band specifies the input variable range over which the output value is
proportional to the error value (i.e., changes in the measured variable result in proportional changes in the
output signal). The proportional band is centered around setpoint for the loop. This point is expressed in
the same kind of measurement units (engineering units) that the measured variable uses—for example:
degrees, cfm, inches of WC.

To determine PB, first decide how closely the loop must control to the setpoint. For instance, if the setpoint
is 72F, then an acceptable control range might be within two degrees of the setpoint. This control range
can be expressed as a band centered on the setpoint: from 70 to 74, or 4 degrees—the proportional
band (PB). Refer to Figure 12-1 and Figure 12-2.

For normal acting control loops (see Figure 12-1), the (PO) Percent Output property is set to maximum
output when the input variable equals the setpoint plus half of the proportional band (CS + PB/2). The
percent output is set to minimum output when the input variable equals the setpoint minus half of the
proportional band (CS - PB/2). These associations are reversed for reverse acting control loops. PO will
be midway between minimum and maximum output when the measured variable is equal to the control
setpoint CS. The opposite would be true for reverse acting control loop as shown in Figure 12-2.

Table 12-2 : Schedules to Follow

SM bit Schedule

0 Schedule 1

1 Schedule 2

2 Schedule 3

3 Schedule 4

4 Schedule 5

5 Schedule 6

6 Schedule 7

7 Schedule 8

8 Schedule 9

9 Schedule 10
12-14 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS PULSE-PAIR PID CONTROL
Figure 12-7: Proportional Band for Normal Acting Control (SG = 0)

Figure 12-8: Proportional Band for Reverse Acting Control (SG = 1)

Proportional only control produces cycling, and its performance changes when the measured environment
changes. The way to eliminate cycling and to compensate for load changes is to use integral action, the “I”
part for PID control.

12.3.3 DEADBAND CONFIGURATION
The (DB) Desired Control Deadband property specifies the deadband within the proportional control
band in which the output remains constant at a point midway between maximum output and minimum
output. By specifying a deadband that is greater than or equal to the resolution of the loop measured
variable, you eliminate the possibility of cycling around the setpoint. The value of the deadband should

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

Output

OH

OL

Control Loop

Variable

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

Output

OH

OL

Control Loop

Variable
MatrixBBC Programmers Guide (10/5/2012) 12-15

PULSE-PAIR PID CONTROL SECTION 12: CONTROL LOOPS
never exceed the proportional band. If the deadband is greater than the proportional band, then the control
loop will not have proportional control.

The deadband is used to specify an input variable range within the proportional band. The size of the
deadband should be based on the loop measured variable. When the value of the measured variable is
within this dead band, the output signal remains constant at the midpoint of the minimum/maximum range.

The point that deadband is centered on tone of the four defined set points to create the actual control dead
band. When the value of the loop measured variable is within DB/2 of the setpoint, the loop assumes that
it has reached the setpoint. Refer to Figure 12-3.

Figure 12-9: Normal Acting (above) and Reverse Acting (below), Proportional Control Output Response
Showing a Dead Band Centered Around the Setpoint (SP)

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

OUTPUT

MX

MN

Control Loop

Variable

SP+PB/2

SP-DB/2

SP

PB

DB

SP+DB/2

SP-PB/2

OUTPUT

MX

MN

Control Loop

Variable
12-16 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS PULSE-PAIR PID CONTROL
By entering a value in deadband that is greater than the resolution of the measured variable sensor, you
create a deadband that allows the loop to effectively reach setpoint. Be sure that the deadband selected
does not exceed the size of the proportional band.

12.3.4 RESET CONTROL SETUP
The (MR) Maximum Amount to Reset Setpoint property specifies the maximum amount to reset the loop
setpoint (SP) based on when reset is being used. Property CS takes into account the use of the maximum
reset specified in MR.

The (RC) Reset Variable and (RA) Reset Attribute specify the object and property to be used as the
Reset Variable.

The (RS) Reset Setpoint property specifies the value at which the reset action begins. When the value of
the reset variable exceeds RS, reset action will be used in determining the calculated setpoint. Just as SP
is the proportional control setpoint for the measured variable specified in IC and IA, RS is the reset control
setpoint for the value of the reset variable selected by RC and RA.

The (RL) Reset Limit property specifies the value at which maximum reset is used. When the value of the
reset variable is equal to RL, the maximum reset (MR) is used in determining the calculated setpoint (CS).

The relationship between RL and RS, as well as the sign (+ or) of MR, determines how changes in the
reset variable specified by RC and RA affect the calculated control setpoint CS. Refer to Figure 12-4. In
the illustrations, references to SP generically refer to your currently used scheduled setpoint.

CAUTION
Never change DB to a value greater than half of the
proportional band PB. Doing so will eliminate the
effects of PID control, resulting in on/off control.
MatrixBBC Programmers Guide (10/5/2012) 12-17

PULSE-PAIR PID CONTROL SECTION 12: CONTROL LOOPS
Figure 12-10: Four Forms of Reset Action

With appropriate values entered for these properties, the loop will provide simple closed loop feedback
proportional control. This means that the actual measured performance of the control (from the measured
variable input) is fed back to the controller and is compared with the effective setpoint for the loop. Any
difference between the actual value of the measured variable and effective setpoint values is called error.

One problem with proportional only control is the changes in loop performance that occur when the
condition being measured by the input sensor changes (e.g., the measured temperature changes when a
door is opened and the room or space is flooded with cold air). As the loop environment changes, the
proportional only control loop begins to cycle around an offset from the setpoint. Figure 12-5 illustrates the
performance of a typical loop under proportional only control.

SP

SP+MR

RL<RS

MR>0

RL RS
RC

1

SP

SP-MR

RL>RS

MR<0

RL

RL

RS

RS

RC

SP

SP+MR

RL>RS

MR>0

RLRS

RC

2

3

SP

SP-MR

RL<RS

MR<0

RC

4

12-18 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS PULSE-PAIR PID CONTROL
Figure 12-11: Proportional Only Control

Rather than responding exclusively to the loop error from moment to moment as is the case with
proportional action, integral action is based on a summation of the error that has occurred over some
period. This error sum is used to reset, or modify, the response of the control loop (output) based on a
running average of the error. The amount of time over which the error averaging is accumulated is called
the reset period.

The (RP) Reset Period property specifies the reset period (in seconds) over which the error history is
accumulated. If RP = 10 seconds with a constant error of 2.0, then the error history would increase by 0.2
every second. In five seconds, the error history would be 1.0. At the end of ten seconds, the error history
would be 2.0. Setting RP to 0 disables integral action making the loop proportional only. The longer RP is,
the less effect it has on the control response. Figure 12-6 shows the response of a typical control loop
when integral action is used in addition to proportional action (PI control). A value of 0 disables the reset
period.

Figure 12-12: Proportional + Integral (PI) Control

At the start-up of the loop or following a change in setpoint (see Figure 12-6), the error is fairly large.
Proportional action causes the loop output to accelerate toward the setpoint. However by the time the loop
response reaches the setpoint value, it has gained inertia from the preceding proportional action. This
causes the loop to overshoot the setpoint. As the loop exceeds the setpoint moving toward its first peak,

+

-

PB Error

TIME

SP

+

-

PB Error

TIME

SP
MatrixBBC Programmers Guide (10/5/2012) 12-19

PULSE-PAIR PID CONTROL SECTION 12: CONTROL LOOPS
the error sum is accumulating. This slows down the acceleration, eventually causing the downturn in
response.

As the error falls and then drops below the setpoint, the error sum will be reduced because now the error
is in the opposite direction. The cycle continues in diminishing peaks until it finally converges at the
setpoint as shown in Figure 12-6.

The proportional control action of the loop has a major effect on integral action. Increasing PB results in a
smaller integral effect for a given value of RP. In general, decreasing the proportional band, PB, will
increase the magnitude of the changes in PO.

Several important factors may not be obvious to inexperienced users of these DDC techniques.

First, whenever the error falls outside of the proportional band—that is, PB/2 from the setpoint, two
important things happen: the controller’s output is fully pegged in the appropriate direction, and the error
sum stops accumulating. The control produces its maximum output because it must bring the error within
the proportional band again. The error sum stops accumulating so that it does not “wind up” a massive
error sum that would take many control cycles to dissipate. This feature is called anti reset windup.

Anti reset windup also makes the loop recover quickly when it reenters the proportional band. Another
feature of anti reset windup is that the error history is limited to PB/2 because that is all that required to
produce maximum output. Additional error accumulation would only slow down loop recovery.

To quicken loop response while eliminating overshoot, derivative action must be taken. Derivative action
takes into account the rate of change in error and allows the loop to counter the effects of the error’s rate
of change on the control output. To find the change in error, subtract the current error (read every second
by the PID loop) from the previous second’s error. A percentage of this change (specified by RT) becomes
the derivative contribution to the PID output.

The (RT) Derivative Rate property specifies a percentage of change in error that is to be used in
calculating PO. The value is specified in percent per second. The point RT can have any value from 0.0 to
25.5%/second.

12.3.5 CALIBRATION
The (TT) Travel Time property is used to specify the total time in seconds (0 to 65,535 seconds) that it
takes the motor actuator to go full stroke (from fully open to fully closed). TT is used to determine the
current position (CP) of the motor. TT defaults to a value of 0 seconds.

CAUTION
The travel time of a motor depends on the load that
is applied to the motor. For accuracy, it is
suggested that you determine TT when the motor is
loaded. For spring loaded motors, the full stroke
travel time from 0% to 100% may be different than
the 100% to 0% travel time. You may choose to use
the higher of the two travel times for TT. In this
case, it is recommended that you perform regular
calibrations on the motor.
12-20 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS PULSE-PAIR PID CONTROL
The actuator can be manually calibrated by enabling floating point control pair enable (PE=1), disabling PI
control (CE=0) and setting DP to 0% or 100%. When the actuator is at the programmed position (after
approximately TT seconds), set CP to 0% or 100% accordingly. Finally, be sure to return PI control (CE=1)
if you want DP to be set automatically.

Floating point control loops can be calibrated automatically by the loop at programmable intervals. This is
done using the recalibrate interval. The (RI) Recalibration Interval property specifies how often (if at all)
the associated floating point control object is to be recalibrated.

RI is given in hours (0-255 hours). If RI=0, then recalibration of floating point control loops does not occur.
If RI>0, recalibration of the associated floating point control loops occurs every RI hours.

The loop recalibrates the floating point control loops by driving the desired position (DP) to the fully closed
position (0%) for the amount of time specified in the travel time property (TT). The loop then sets the
current position to 0%, after which the recalibration is complete and the controller returns the desired
position to its original value.

For floating point control objects, you can enable an automatic creep feature using property CR, the creep
enable property. This feature is used to automatically calibrate the output when its desired position is either
0% or 100%. The automatic creep feature is performed in one of two ways: (1) the appropriate output is left
on when the output signal is at 0% or 100%, or (2) the output is creeped (pulsed) at a rate of 1% per
minute (the current position is set to 1% or 99%) when the output signal is at 0% or 100%. The value of the
creep enable property (CR) selects the desired method.

These two methods of output correction (continuous on and automatic creep) are illustrated in Figure 7-13.
This example shows a floating point control loop with a desired position of 100%.
MatrixBBC Programmers Guide (10/5/2012) 12-21

PULSE-PAIR PID CONTROL SECTION 12: CONTROL LOOPS
Figure 12-13 Auto Creep

12.3.6 STAT OVERRIDE OFFSET AND ADJUSTMENT
In order for a setpoint adjustment to be made from a STAT, the Universal Input that referenced a
connected SmartSTAT must be linked to a control loop that adjusts the loop. Once linked, three properties
are used to establish adjustment parameters between the STAT and the control loop. Three properties
control the setpoint offset, display the current position of the override offset, and displays the remaining
time duration for adjustment. These properties (MO) STAT Maximum Override Offset specifies the
degree offset adjusted each time a user presses the up or down arrow from a specific thermostat. (CO)
Stat Current Override Offset displays the current adjust setpoint position of the linked STAT. Finally, (OR)
STAT Override Time Remaining displays the amount of time left for the effective setpoint adjustment
made from the linked STAT.

GPC

OPEN CLOSE

Output is Pulsed
1% Every Minute
While Desired
Output is 100%

On

Off

On

Off

TIME

TIME

1 MINUTE

AUTOMATIC CREEP METHOD

Motor Control

Pair

GPC

OPEN CLOSE

Output remains on
while the desired

output is 100%

Motor control loop

reaches 100%position

(the desired position0

On

Off

On

Off

TIME

TIME

CONTINUOUS ON METHOD

Motor Control

Pair
12-22 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS PULSE-PAIR PID CONTROL
12.3.7 ENABLING THE CONTROL LOOP
The (CE) Enable Control Loop? property enables and disables the loop. When CE = 0, the loop output is
not updated but may be set manually. When CE = 1, the loop output is updated by the PID control loop and
the corresponding analog output is controlled.

If the (DP) Desired Position of the motor is greater than the current position, the controller will drive the
motor open by turning on the “increase” output for a calculated period of time. If the desired position is less
than the current position, the controller will drive the motor closed by turning on the “decrease” output for a
calculated period of time.

When the output increases, property (O1) Output #1 (Load) will output a true signal. When the output
decreases, (O2) Output #2 (Unload) will output a true signal. These properties will be referenced by the
AutoStuff feature of Binary Output objects to drive output signals.

The desired position of the floating point control object can be set manually or calculated automatically by
the PI algorithm. The automatic floating point control algorithm operates as follows. When the value of the
selected measured variable is within the control loop’s deadband, no control action is taken by the PI loop.
When the value of the measured variable is outside the deadband, but within a programmable proportional
band, the output is modulated using PI control according to the setpoint of the control loop. When the value
of the measured variable is outside the deadband and beyond (either above or below) the proportional
band, the output is set to either 0% or 100%, as appropriate.

CAUTION
Properties O1 and O2 must be tied directly to
Binary Output objects using the output’s AutoStuff
feature and not a Remap or Netmap object. These
properties may pulse on and off rapidly.
MatrixBBC Programmers Guide (10/5/2012) 12-23

THERMOSTATIC CONTROL SECTION 12: CONTROL LOOPS
12.4 THERMOSTATIC CONTROL
Thermostatic Control Loops are used to provide effective on/off binary control. When thermostatic control
is enabled, the present-value can be used to control binary outputs or software values based on user-
defined set points. By calculating a control setpoint, which takes into account different set points during
warmup, unoccupied and night setback periods, and comparing it with the measured variable, the loop can
determine the output value necessary to maintain the desired setpoint. The control loop can enforce a
control deadband to prevent hysteresis and can be configured to operate based on one or multiple pre-
defined schedule to allow the loop to differentiate setpoint control.

12.4.1 BASIC SETUP
To initially use a control loop, you must first setup and configure basic properties of the control loop.

12.4.1.1 MODE SETUP
The (MD) Mode defines the control sign of the thermostatic control loop. Two mode are available to apply
a seasonal setup/setback setpoint for applications that require seasonal control (such as Fancoil units).
There are four options available for Thermostatic Control loops:
. Heating in Winter (Else Off) - Provides heating control, independent of the current season.
. Heating in Winter (Else Seasonal Setback) - Provides heating control with integrated seasonal set-

back.
. Cooling in Summer (Else Off) - Provides cooling control, independent of the current season.
. Cooling in Summer (Else Seasonal Setback) - Provides cooling control with integrated seasonal set-

back.

12.4.1.2 MEASURED VARIABLE CONFIGURATION
The (IO) Input Object and (IP) Input Property properties specify the object and property to be used as
the loop measured variable. It specifies the input to be used for the control loop’s measured variable. Any
object property within the MatrixBBC can be used as the measured variable by configuring these
properties appropriately.

When the control loop is enabled, (IV) Input’s Present Value will reflect the current value of the loop
measured variable.

12.4.1.3 SETPOINT CONFIGURATION
Each control loop contains four setpoint properties, defining the control setpoint that is used for a specific
schedule mode. The setpoint is expressed in the same kind of measurement units (engineering units) that
the measured variable uses (e.g., degrees, cfm, inches of WC, etc.). This value is used with the setup/
setback value and any reset to calculate the actual setpoint used to control the loop. If you intend to
configure your MatrixBBC to perform four-mode scheduling (see Section 8 - Scheduling for more details),
you may define a setpoint for each occupancy mode (Warmup, Occupied, Unoccupied, Night Setback).

. (US) Unoccupied Setpoint defines the control setpoint for Unoccupied periods.

. (OS) Occupied Setpoint defines the control setpoint for Occupied periods.

. (WS) Warmup Setpoint defines the control setpoint for Warmup periods.

. (NS) Night Setback Setpoint defines the control setpoint for Night Setback periods.

. (SO) Seasonal Setup Setback Setpoint defines the amount of setback applied to the set points listed
above when the control loop is in the off.

When the control loop is later enabled (using (CE) Enable Control Loop), the (CS) Calculated Control
Setpoint will reflect which setpoint is currently active.
12-24 MatrixBBC Programmers Guide (10/5/2012)

SECTION 12: CONTROL LOOPS THERMOSTATIC CONTROL
The (SM) Schedules to Follow property allows control loop to reference a schedule and transition
through programmed set points appropriately. Each bit in SM corresponds to one of up to 10 available
schedules. These bits are summarized in Table 12-1.

If you do not want to use schedule control, disable all of the bits and configure only the (OS) Occupied
Setpoint for control.

The (SS) Season property dictates the current season mode to the control loop. The season can be
adjusted automatically by the Season object, or by directly writing to this property using logic.

12.4.2 CONFIGURING LOOP PARAMETERS
The (DB) Desired Control DeadBand property specifies a control deadband for the thermostatic control
loop. For a normal action control, this specifies the amount by which the temperature must drop below the
cooling setpoint before the output is de-energized (SP-DB). For a reverse action control. this specifies the
amount by which the temperature must rise above the heating setpoint before the output is de-energized
(SP+DB). This response is illustrated in Figure 12-14.

Figure 12-14: Deadband for a Normal Acting (a) and Reverse Acting (b) Thermostatic Control Loop

Table 12-3 : Schedules to Follow

SM bit Schedule

0 Schedule 1

1 Schedule 2

2 Schedule 3

3 Schedule 4

4 Schedule 5

5 Schedule 6

6 Schedule 7

7 Schedule 8

8 Schedule 9

9 Schedule 10

Cooling DeadbandCooling Setpoint

minus

Cooling Deadband

Cooling
 Setpoint

Cooling
On

Cooling
Off

Cooling
On

Cooling
Off

Heating Deadband

HeatingSetpoint

plus

Heating Deadband Heating
 Setpoint

Heating
Off

Heating
On

Heating
Off

Heating
On

(a)

(b)
MatrixBBC Programmers Guide (10/5/2012) 12-25

THERMOSTATIC CONTROL SECTION 12: CONTROL LOOPS
12.4.3 STAT OVERRIDE OFFSET AND ADJUSTMENT
In order for a setpoint adjustment to be made from a STAT, the Universal Input that referenced a
connected SmartSTAT must be linked to a control loop that adjusts the loop. Once linked, three properties
are used to establish adjustment parameters between the STAT and the control loop. Three properties
control the setpoint offset, display the current position of the override offset, and displays the remaining
time duration for adjustment. These properties (MO) STAT Maximum Override Offset specifies the
degree offset adjusted each time a user presses the up or down arrow from a specific thermostat. (CO)
Stat Current Override Offset displays the current adjust setpoint position of the linked STAT. Finally, (OR)
STAT Override Time Remaining displays the amount of time left for the effective setpoint adjustment
made from the linked STAT.

12.4.4 ENABLING THE CONTROL LOOP
The (CE) Enable Control Loop? property enables and disables the loop. When CE = 0, the loop output is
not updated but may be set manually. When CE = 1, the loop output is updated by the PID control loop and
the corresponding analog output is controlled.

Once enabled, the thermostatic control object will control based on the (CS) Calculated Control Setpoint
property. This property represents the desired temperature in the area being controlled. The controller will
begin with the setpoint value based on your current schedule mode (if schedules have been selected).

The value of CS is compared to the measured variable. The difference between CS and the measured
variable will be stored in the (DL) Demand Load property. If the measured variable does not equal the
calculated setpoint and is outside of the specified control deadband, then action will be taken to correct the
measured variable.

The present-value property indicates the current state of the control loop. Control loop conditions are true
(On) and false (typically Off).
12-26 MatrixBBC Programmers Guide (10/5/2012)

SECTION 13: MISCELLANEOUS

This section describes control objects available under the Miscellaneous category of the MatrixBBC
platform. The MatrixBBC supports a single Comm Status object, a single Season object, and a Single
Manufacturing Object.
IN THIS SECTION
Comm Status.. 13-3
 Communication Status Options... 13-3
Season... 13-4
 Indicating the Current Season .. 13-4
 Controlling Seasonal TSTAT Loops Directly ... 13-4
 Overview of Current Seasonal States ... 13-4
Mfg Object.. 13-5
 (UT) Uptime Counter in Seconds.. 13-5
MatrixBBC Programmers Guide (10/5/2012) 13-1

SECTION 13: MISCELLANEOUS
13-2 MatrixBBC Programmers Guide (10/5/2012)

SECTION 13: MISCELLANEOUS COMM STATUS
13.1 COMM STATUS
The Communication Status object allows event to be triggered within logic in the event of a BACnet MS/TP
network failure. The object’s present-value property indicates the current status of network
communications. A value of 1 indicates good communications, whereas a value of 0 indicates bad
communications.

13.1.1 CREATING THE COMM STATUS OBJECT IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
The Comm Status object is created by the technician when necessary, and are done in a dynamic manner.

To create a Comm Status object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MR) Max Comm Status property. By default, this value is set to 0, indicating no Comm Status

object exists.
3. To create a Comm Status object, write a value of 1.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Comm Status object, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

13.1.2 COMMUNICATION STATUS OPTIONS
There are a few different types of fail scenarios that can be used to allow the GPC to consider a
communication failure. The fail scenario is configured using property (FM) Failure Mode Selection. This
feature begins operation after boot-up, based on the time value programmed in (BD) Failure Mode Boot
Delay in Second.

Options for tracking communication failures include the following:

13.1.2.1 ALWAYS MARKED AS GOOD
This option will always consider communications in good standing. This option should be used if you
intend to manually set the present-value using your own custom logic algorithm (which requires out-of-
service to be set to true).

13.1.2.2 FAIL IF NOT PASSED A TOKEN
This option will set present-value to a value of 1 in the event that a BACnet MS/TP network token has not
been passed to the GPC in the time period specific in (FD) Failure Mode Delay Time in Seconds.

13.1.2.3 FAIL IF NO DATA IS READ/WRITTEN
This option will set present-value to a value of 1 in the event that a read or write request has not been
made to the GPC controller in the time period specific in (FD) Failure Mode Delay Time in Seconds.
MatrixBBC Programmers Guide (10/5/2012) 13-3

SEASON SECTION 13: MISCELLANEOUS
13.2 SEASON
The Season object is used to declare the current season status for Thermostatic Control objects that are
setup and configured to use seasonal setpoint setback.

13.2.1 CREATING THE SEASON OBJECT IN THE MATRIXBBC
By default, the MatrixBBC contains only a Device object for the purpose of initial network communications.
The Season object is created by the technician when necessary, and are done in a dynamic manner.

To create a Season object, perform the following steps in NB-Pro:
1. Access the Device object of the MatrixBBC.
2. Find the (MQ) Max Season property. By default, this value is set to 0, indicating no Season object

exists.
3. To create a Season object, write a value of 1.
4. Click Update Value in NB-Pro.

In order to see and view the newly created Season object, you must re-discover the object list of the
MatrixBBC. To do this, select Discovery>Discover Object List, then click on the MatrixBBC in the Devices
list in NB-Pro.

13.2.2 INDICATING THE CURRENT SEASON
By default, there is no internal control scheme in place that allows the GPC to determine the current
seasonal status. This capability must be defined using your own logic. Once determined, write commands
are made directly to the present-value property defines the current season setting, where:
. 0 = Summer
. 1 = Winter

13.2.3 CONTROLLING SEASONAL TSTAT LOOPS DIRECTLY
The Season object has the ability to automatically update the season property in Thermostatic Control
loops. In this way, by simply writing a state to the present-value of the Season object, any logic driven by
this value as well as any Thermostatic Control loops liked to via (TC) T-STAT Objects Controlled By This
Object will automatically take the seasonal change into effect. The MatrixBBC will permit the first 32
Thermostatic Control Loops to be directly controlled. All other loops are intended for closed control, or
pseudo-control.

13.2.4 OVERVIEW OF CURRENT SEASONAL STATES
The (TS) T-Stat Objects Current SS State property is a read-only property that reflects the current value of
the (SS) Season property of each Thermostatic Control loop within the GPC.
13-4 MatrixBBC Programmers Guide (10/5/2012)

SECTION 13: MISCELLANEOUS MFG OBJECT
13.3 MFG OBJECT
The Mfg. Object is a diagnostic object commonly used by AAM Technical Services to troubleshoot
controller related issues relative to processor and memory. Much of the information provided here is purely
diagnostic and does not carry any specific meaning for daily runtime usage. However, there are a few
properties that are worthwhile to note.

13.3.1 (UT) UPTIME COUNTER IN SECONDS
The (UT) Uptime Counter in Seconds property indicates how many seconds that the GPC controller has
been active since boot time. If you believe your device may be losing power, this is an excellent property to
trend.
MatrixBBC Programmers Guide (10/5/2012) 13-5

MFG OBJECT SECTION 13: MISCELLANEOUS
13-6 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES

The following tables contain listings of the BACnet objects and property assignments for the MatrixBBC.
Each property is listed with its identifier number, data type, access code, storage, default value (if any)
and a brief description of its functionality.
IN THIS SECTION
Device Object... A-2
Analog Inputs (UIs) .. A-8
Binary Inputs (UIs) and (DIs).. A-11
Piecewise Curves .. A-14
Analog Outputs .. A-16
Binary Outputs ... A-19
STATBus Summary.. A-21
STATBus .. A-22
Programs 1-64 ... A-23
FILE0 ... A-25
PLB1-64 ... A-26
Analog PID... A-27
Pulse Pair PID.. A-30
Thermostatic Control.. A-33
Schedules .. A-35
Schedules .. A-35
Calendars... A-37
Notification Class ... A-38
Math ... A-39
Logic .. A-40
Min/Max/Avg .. A-42
Enthalpy ... A-43
Scaling ... A-44
Input Select .. A-45
Staging ... A-46
Broadcast ... A-49
Remap ... A-50
Netmap .. A-51
Analog Value .. A-53
Binary Value ... A-55
Comm Status.. A-57
Season... A-58
MatrixBBC Programmers Guide (10/5/2012) A-1

DEVICE OBJECT APPENDIX A: OBJECTS & PROPERTIES
A.1 DEVICE OBJECT

NOTE
The Device object is represented in NB-Pro as follows:
Device Name xxxxxxxxxx
(where xxxxxxxxxx is the Unitary Controller serial number)

The instance must be a unique number from 0 to 4194302. By
default, AAM sets the value in such a way that it is unique to
AAM products based off the unit's serial number, however the
user must ensure the device instance is unique on the job
site's network.

Property Identifier # Data Type Access Default Value Description

object_
identifier

75
BACnet
ObjID

RW Device (8), Instance a numeric code that is used to identify the object.

object_name 77 CharStr RW MatrixBBC represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Device (8) indicates membership in a particular object type class.

system_status 112
BACnet
ObjID

RO 0 indicates the current physical and logical status of the BACnet Device.

vendor_name 121 CharStr RO
American Auto-

Matrix
identifies the manufacturer of the BACnet Device.

vendor_
identifier

120 Unsigned RO -6
a unique vendor identification code, assigned by ASHRAE, which is
used to distinguish proprietary extensions to the protocol.

model_name 70 CharStr RO NB-BBC1 indicates the vendor’s name used to represent the model of the device.

firmware_
revision

44 CharStr RO revision number indicates the level of firmware installed in the device.

application_
software_
version

12 CharStr RO version number identifies the version of application software installed in the device.

protocol_
version

98 Unsigned RO 1
indicates the version of the BACnet protocol supported by this BACnet
Device.

protocol_
revision

139 Unsigned RO
-
2

indicates the minor revision level of the BACnet standard.

protocol_
services_
supported

97
BACnet
Services
Supported

RO -
indicates which standardized protocol services are supported by this
device's protocol implementation.

protocol_
object_
types_

supported

96

BACnet
Object
Types

Supported

RO -
indicates which standardized object types are supported by this
device's protocol implementation.

object_list 76
BACnet
Array

RO -
a list of each object within the device that is accessible through BACnet
services.
A-2 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES DEVICE OBJECT
max_apdu_
length_

accepted
62 Unsigned RO 480

specifies the maximum number of information frames the node may
send before it must pass the token.

segmentation_
supported

107
BACnet

Segment
ation

RO
Segmentation Both

(0)
indicates whether the device supports segmentation of messages and,
if so, whether it supports segmented transmission, reception, or both.

local_time 57 Time RW - indicates the time of day to the best of the device's knowledge.

local_date 56 Date RW - indicates the date to the best of the device's knowledge.

utc_offset 119 Integer RW 240
indicates the number of minutes (-780 to +780) offset between local
standard time and Universal Time Coordinated.

daylight_
savings_

status
24 Boolean RW 0 indicates whether daylight savings time is in effect or not.

apdu_segment_t
imeout

10 Integer RW 5000 indicates the timeout for segmented data packets.

apdu_timeout 11 Unsigned RW 10000
indicates the amount of time, in milliseconds, between retransmissions
of an APDU requiring acknowledgment for which no acknowledgment
has been received.

number_of_
apdu_retries

73 Unsigned RW 3
indicates the maximum number of times that an APDU shall be
retransmitted.

time_
synchronization

_recipients
116

List of
BACnet

recipients
RW {}

a list of one device to which the device may automatically send a Time
Synchronization request.

max_master 64 Unsigned RO 127
specifies the highest possible address for master nodes and shall be
less than or equal to 127.

max_info_
frames

63 Unsigned RO 5
specifies the maximum number of information frames the node may
send before it must pass the token.

device_
address_
binding

30 List RW -
a list of the device addresses that will be used when the remote device
must be accessed via a BACnet service request.

configuration_fil
es

154 List RO - defines the database file that is backed-up/restored.

database-
revision

155 Integer RO - defines the database revision of the device.

active-cov-
subscriptions

152 List RO -
defines a list of active-COV subscriptions being maintained by the
device.

last-restart-
reason

196 Integer RO - defines the reason for last restart.

time-of-device-
restart

203
Date/
Time

RO -
defines the last time and date stamp that the device restarted or
started-up.

restart-
notification-
recipients

202 List RO -
defines a list of recipients that should receive a notification should the
device restart.

time-synch-
interval

204 Integer RW 0
defines the amount of time, in minutes, that a time-synch message is
sent by this device when configured to do so.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-3

DEVICE OBJECT APPENDIX A: OBJECTS & PROPERTIES
align-intervals 193 Bool RW False (0)
defines if intervals for time-synchronizations are aligned to the top of
the time interval.

interval-offset 195 Integer RW 0 defines an interval offset (in minutes) to delay a time-sych.

last-restore-time 157
Date/
Time

RO - defines the last date and time the device was restored.

backup-failure-
timeout

153 Integer RW -
defines the amount of time (in seconds) that backup failure will be
considerd timed out.

slave-proxy-
enable

172 List RW False|False
defines if slave-proxy capabilities are enabled for each RS-485 port of
the device.

manual-slave-
address-binding

170 List RW -
defines the list of MS/TP slaves that the device will send I-Am
messages for.

slave-address-
binding

171 List RO -
reflects active slaves that are under proxy representation by the
MatrixBBC.

profile-name 168 CharStr RO
6-NB-BBC1-11-R1

defines the profile name used by AAM Tools to correspond program
files to a MatrixBBC controller.

FT 50772 Unsigned RO 7
Firmware Type
indicates which firmware is installed on the controller, reflecting
MatrixBBC

OS 53075 Real RO
Kernel Version
indicates the version number of the kernel.

VE 54853 Real RO
Firmware Version
contains the version of the controller’s firmware.

VO 56863 Real RO
I/O Firmware Version
contains the version of the controller’s I/O firmware.

SR 54098 Unsigned RO
Flash Release Code
the release code of the firmware currently flashed on the controller,
used primarily for technical support purposes.

CT 50004 Unsigned RO
205

Controller Type
factory-set controller type number for the controller.

FC 50755 Unsigned RO
Flash update count
indicates the number of times the controller has been flashed.

SN 54094 Unsigned RO
Serial Number
the factory-set serial number.

EM 50509 Boolean RW 0

Engineering Units
specifies the units to be used when returning values

0=English
1=Metric

PD 53316 Unsigned RW 15

Power-Up Delay
time delay (in seconds) that must elapse after the controller is reset
before it begins control and alarming functions.

0=No delay
1-255=# of seconds

CP 50000 Unsigned RO -
Baud Rate Line 1
reflects the baud rate for MS/TP Port 1.

Property Identifier # Data Type Access Default Value Description
A-4 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES DEVICE OBJECT
ID 51524 Unsigned RO -
Unit Number (MSTP) Line 1
reflects the Unit ID/MAC Address assignement for MS/TP Port 1.

C2 49970 Unsigned RO -
Baud Rate Line 2
reflects the baud rate for MS/TP Port 2.

I2 50226 Unsigned RO -
Unit Number (MSTP) Line 2
reflects the Unit ID/MAC Address assignment for MS/TP Port 2.

DE 50245 Unsigned RW 0

Default Enable
used to return the database of the MatrixBBC to default conditions,
where a single Device object, and STATbus objects (if licensed) will be
available.

0=Normal operation
197=set properties to their default values.

RS 53843 Unsigned RW 0

Reset the MatrixBBC Control Engine?
used to reset the control engine of the MatrixBBC.
Setting RS to 1 resets the control engine.

0=No
1=Reset Control Engine

MK 52555 Unsigned RW 0
Max Analog Input Objects
used to dynamically create a set number of corresponding object types
within the database.

MM 52557 Unsigned RW 0
Max Analog Output Objects
used to dynamically create a set number of corresponding object types
within the database.

M1 52529 Unsigned RW 0
Max Analog Value Objects
used to dynamically create a set number of corresponding object types
within the database.

ML 52556 Unsigned RW 0
Max Binary Input Objects
used to dynamically create a set number of corresponding object types
within the database.

MN 52558 Unsigned RW 0
Max Binary Output Objects
used to dynamically create a set number of corresponding object types
within the database.

M2 52530 Unsigned RW 0
Max Binary Value Objects
used to dynamically create a set number of corresponding object types
within the database.

MC 52547 Unsigned RW 0
Max Calendar Objects
used to dynamically create a set number of corresponding object types
within the database.

MD 52548 Unsigned RW 0
Max Schedule Objects
used to dynamically create a set number of corresponding object types
within the database.

MQ 52561 Unsigned RW 0
Max Season Objects
used to dynamically create a set number of corresponding object types
within the database.

M9 52537 Unsigned RW 0
Max Input Select Objects
used to dynamically create a set number of corresponding object types
within the database.

MA 52545 Unsigned RW 0
Max Remap Objects
used to dynamically create a set number of corresponding object types
within the database.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-5

DEVICE OBJECT APPENDIX A: OBJECTS & PROPERTIES
MB 52546 Unsigned RW 0
Max Netmap Objects
used to dynamically create a set number of corresponding object types
within the database.

MI 52553 Unsigned RW 0
Max Program Objects
used to dynamically create a set number of corresponding object types
within the database.

M6 52534 Unsigned RW 0
Max Logic Objects
used to dynamically create a set number of corresponding object types
within the database.

M7 52535 Unsigned RW 0
Max Math Objects
used to dynamically create a set number of corresponding object types
within the database.

M8 52536 Unsigned RW 0
Max MinMaxAvg Objects
used to dynamically create a set number of corresponding object types
within the database.

MF 52550 Unsigned RW 0
Max Trend Objects
used to dynamically create a set number of corresponding object types
within the database.

M3 52531 Unsigned RW 0
Max Motor Objects
used to dynamically create a set number of corresponding object types
within the database.

M4 52532 Unsigned RW 0
Max Scale Objects
used to dynamically create a set number of corresponding object types
within the database.

M5 52533 Unsigned RW 0
Max PWC Objects
used to dynamically create a set number of corresponding object types
within the database.

ME 52549 Unsigned RW 0
Max Enthalpy Objects
used to dynamically create a set number of corresponding object types
within the database.

MG 52551 Unsigned RW 0
Max Thermostatic Control Objects
used to dynamically create a set number of corresponding object types
within the database.

MH 52552 Unsigned RW 0
Max PID Control Objects
used to dynamically create a set number of corresponding object types
within the database.

MJ 52554 Unsigned RW 0
Max Staging Objects
used to dynamically create a set number of corresponding object types
within the database.

MO 52559 Unsigned RW 0
Max Notification Class Objects
used to dynamically create a set number of corresponding object types
within the database.

MR 52562 Unsigned RW 0
Max Comm Status Objects
used to dynamically create a set number of corresponding object types
within the database.

MS 52563 Unsigned RW 0
Max Manufacturing Objects
used to dynamically create a set number of corresponding object types
within the database.

Property Identifier # Data Type Access Default Value Description
A-6 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES DEVICE OBJECT
MT 52564 Unsigned RW 0
Max Broadcast Objects
used to dynamically create a set number of corresponding object types
within the database.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-7

ANALOG INPUTS (UIS) APPENDIX A: OBJECTS & PROPERTIES
A.2 ANALOG INPUTS (UIS)

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Analog Input (3),

Instance N or Binary
Input (3), Instance N

 a numeric code that is used to identify the object.

object_name 77 CharStr RW Universal Input N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Analog Input (0) indicates membership in a particular object type class.

present_value 85 Real RW 0 indicates the current value, in engineering units, of the object.

status_flags 111
BACnet
Status
Flags

RO 0 four flags that indicate the general health of the program.

event_state 36
BACnet
Event
State

RO 0
provides a way to determine if this object has an active event state
associated with it.

reliability 103 BACnet
Reliability

RO 0
indicates whether the present_value is reliable as far as the device or
operator can determine.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

units 117
BACnet

Eng.
Units

RW 95 indicates the measurement units of this object.

min_pres_value 69 Real RW
indicates the lowest number that can be reliably used for the
present_value property of this object.

max_pres_value 65 Real RW
indicates the highest number that can be reliably used for the
present_value property of this object.

resolution 106 Real RO -0.001525
indicates the smallest recognizable change in present_value in
engineering units (read-only).

time_delay 113 Unsigned RW 0

specifies the minimum period of time in seconds during which the
present_value must be different from the alarm_value property before
a TO-OFFNORMAL event is generated or must remain equal to the
alarm_value property before a TO-NORMAL event is generated.

notification_
class

17 Unsigned RW 1
specifies the notification class to be used when handling and
generating event notifications for this object.

high_limit 45 Real RW 0.0
specifies a limit that the present_value must exceed before an event is
generated.

low_limit 59 Real RW 0.0
specifies a limit below which the present_value must fall before an
event is generated.

deadband 25 Real RW 0.0
specifies a range between the high_limit and low_limit properties
within which the present_value must remain for a TO-NORMAL event
to be generated

limit_enable 52
BACnet

Limit
Enable

RW 0
enables and disables reporting of High Limit and Low Limit off normal
events and their return to normal.
A-8 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES ANALOG INPUTS (UIS)
event_enable 35

BACnet
Event
Trans.

Bits

RW 0
 three flags that separately enable and disable reporting of TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events.

acked_
transitions

0

BACnet
Event
Trans.

Bits

RW 7
 three flags that separately indicate the receipt of acknowledgments for
TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events.

notify_type 72
BACnet
Notify
Type

RW 0
specifies whether the notifications generated by the object should be
Events or Alarms.

event_time_stam
ps

130
BACnet
ARRAY

RO -
defines the time stamps for when alarms for each limit type have been
sent.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

IF 51526 Real RW 0

Input Filter Delay or Weighted Gain
the de-bounce time (in seconds) during which the input must remain
stable to avoid the signal being read as a digital bounce. In the case of
a bounce, the object reliability is set to 1.

For analog inputs, IF specifies a weighted gain used to smooth the
values from a fluctuating input.

OF 53062 Real RW
Input Offset
specifies an offset amount to be added to the current value.

RH 53832 Real RW 0
Run Hours
indicates the number of hours present_value=1 for the input.

DF 50246 Unsigned RW 0

Display Format
specifies the way in which the stat will display the temperature.

0=##d
1=##.#d
2=##dF
3=##.#dF
4=None

LS 52307
BACnet
ObjID RW -

STAT Linked Schedule
specifies the corresponding BACnet Schedule object linked to the
thermostat for scheduling occupancy and overrides.

LL 52300
BACnet
ObjID RW -

STAT Linked Loop
specifies the corresponding control loop object linked to the thermostat
for setpoint adjustments.

ED 50500 Unsigned RW 0
STAT Override Minutes
specifies the amount of time, in minutes, a schedule will be overridden
when commanded.

TM 54349 Unsigned RW 0
STAT Show The Time
specifies if the current time should be displayed on the STAT LCD
screen.

EA 50497 Boolean RW False
Enable Alarming
specifies if alarming should be enabled for the object. When set to
False, all alarming properties will be unavailable for selection.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-9

ANALOG INPUTS (UIS) APPENDIX A: OBJECTS & PROPERTIES
ST 54100 Unsigned RW 0

Sensor Type
specifies the type of sensor connected to the input.

0=Digital
2=MN..MX 0 to 5V
3=MN..MX 4 to 20mA
6=MN..MX 0 to 10V
7=Thermistor -30.0 to 230.0
8=MN..MX 0 to 20mA
9=SMARTStat Temperature
10=SMARTStat Humidity
11=Curve 1
12=Curve 2
13=Curve 3
14=Curve 4
15=Curve 5
16=Curve 6
17=Curve 7
18=Curve 8

GI 51017 Unsigned RW 0

GID of I/O Device
indicates the global identification number of the STATbus device
associated with the universal input. If the input does not have a
STATbus device mapped to it, GI will be 0.

I# 51491 Unsigned RW 0
Input Index of I/O Device
indicates the UI number that the Analog Input object will focus upon.
For example, if you monitor UI2 on an IOX1-1, set I# = 2

Property Identifier # Data Type Access Default Value Description
A-10 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES BINARY INPUTS (UIS) AND (DIS)
A.3 BINARY INPUTS (UIS) AND (DIS)

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Binary Input (3),

Instance n
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Universal Input N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Binary Input (3) indicates membership in a particular object type class.

present_value 85 Enum RW 0 indicates the current value, in engineering units, of the object.

status_flags 111
BACnet
Status
Flags

RO 0 four flags that indicate the general health of the program.

event_state 36
BACnet
Event
State

RO 0
provides a way to determine if this object has an active event state
associated with it.

reliability 103 BACnet
Reliability

RO 0
indicates whether the present_value is reliable as far as the device or
operator can determine.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

polarity 84
BACnet
Polarity

RW 0

indicates the relationship between the physical state of the output and
the logical state represented by the present_value property. If the
polarity property is NORMAL, then the ACTIVE state of the
present_value property is also the ACTIVE or ON state of the physical
output as long as out_of_service is FALSE. If the Polarity property is
REVERSE, then the ACTIVE state of the present_value property is
the INACTIVE or OFF state of the physical output as long as
out_of_service is FALSE.

inactive-text 46 CharStr RW Off specifies the text for an OWS to use when the present-value = Inactive.

active-text 4 CharStr RW On specifies the text for an OWS to use when present-value = Active.

time_delay 113 Unsigned RW 0

specifies the minimum period of time in seconds during which the
present_value must be different from the alarm_value property before
a TO-OFFNORMAL event is generated or must remain equal to the
alarm_value property before a TO-NORMAL event is generated.

notification_
class

17 Unsigned RW 0
specifies the notification class to be used when handling and
generating event notifications for this object.

alarm_value 6
BACnet

BinaryPV
- -

specifies the value that the Present_Value property must have before a
TO-OFFNORMAL event is generated.

event_enable 35

BACnet
Event
Trans.

Bits

RW 0
 three flags that separately enable and disable reporting of TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events.

acked_
transitions

0

BACnet
Event
Trans.

Bits

RW 7
 three flags that separately indicate the receipt of acknowledgments for
TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events.

notify_type 72
BACnet
Notify
Type

RW 0
specifies whether the notifications generated by the object should be
Events or Alarms.
MatrixBBC Programmers Guide (10/5/2012) A-11

BINARY INPUTS (UIS) AND (DIS) APPENDIX A: OBJECTS & PROPERTIES
event_time_stam
ps

130
BACnet
ARRAY

RO -
defines the time stamps for when alarms for each limit type have been
sent.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

IV 51542 Unsigned RO 0
Inverted Present Value
indicates if the current present-value is inverted or reversed polarity.

RH 53832 Real RW 0
Run Hours
indicates the number of hours present_value=1 for the input.

IF 51526 Real RW 0

Input Filter Delay or Weighted Gain
the de-bounce time (in seconds) during which the input must remain
stable to avoid the signal being read as a digital bounce. In the case of
a bounce, the object reliability is set to 1.

For analog inputs, IF specifies a weighted gain used to smooth the
values from a fluctuating input.

MD 52548 Unsigned RW 0

Pulse Counter Mode
Defines the method used by the input to count pulses.

0=Rising Edges
1=Falling Edges
2=Both
3=Disable
255=Unsupported Feature

VR 54866 Unsigned RW 0
IVR Setting (For Pulse Counting Mode)
specifies the user adjusted hardware jumper position for the input.

PT 53332 Real RW 0
Pulse Threshold (For Pulse Counting Mode)
specifies the voltage threshold that must be sensed by the MatrixBBC
in order to detect a pulse.

NP 52816 Unsigned RW 0
Number of Pulses Accumulated
defines the total amount of pulses counted by MatrixBBC.

SF 54086 Real RW 0
Pulse Multiplier
specifies a multiplier to apply against the number of pulses
accumulated.

SV 54102 Real RO 0
Scaled Pulse Count
is the result of NP x SF

EA 50497 Boolean RW False
Enable Alarming
specifies if alarming should be enabled for the object. When set to
False, all alarming properties will be unavailable for selection.

Property Identifier # Data Type Access Default Value Description
A-12 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES BINARY INPUTS (UIS) AND (DIS)
ST 54100 Unsigned RW 0

Sensor Type
specifies the type of sensor connected to the input.

0=Digital
2=MN..MX 0 to 5V
3=MN..MX 4 to 20mA
6=MN..MX 0 to 10V
7=Thermistor -30.0 to 230.0
8=MN..MX 0 to 20mA
9=SMARTStat Temperature
10=SMARTStat Humidity
11=Curve 1
12=Curve 2
13=Curve 3
14=Curve 4
15=Curve 5
16=Curve 6
17=Curve 7
18=Curve 8

GI 51017 Unsigned RW 0

GID of I/O Device
indicates the global identification number of the STATbus device
associated with the universal input. If the input does not have a
STATbus device mapped to it, GI will be 0.

I# 51491 Unsigned RW 0
Input Index of I/O Device
indicates the UI number that the Analog Input object will focus upon.
For example, if you monitor UI2 on an IOX1-1, set I# = 2

ST 54100 Unsigned RW 0

Sensor Type
specifies the type of sensor connected to the input.

0=Digital
2=MN..MX 0 to 5V
3=MN..MX 4 to 20mA
4=Curve 1
5=Curve 2
6=MN..MX 0 to 10V
7=Thermistor -30.0 to 230.0
8=MN..MX 0 to 20mA
9=SMARTStat Temperature
10=SMARTStat Humidity

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-13

PIECEWISE CURVES APPENDIX A: OBJECTS & PROPERTIES
A.4 PIECEWISE CURVES

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (305),

Instance 1-8
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Piecewise Curve N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (305) indicates membership in a particular object type class.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

X1 55345 Real RW 0
Point 1’s value in raw counts
specifies the x coordinate of point 1.

X2 55346 Real RW 0
Point 2’s value in raw counts
specifies the x coordinate of point 2.

X3 55347 Real RW 0
Point 3’s value in raw counts
specifies the x coordinate of point 3.

X4 55348 Real RW 0
Point 4’s value in raw counts
specifies the x coordinate of point 4.

X5 55349 Real RW 0
Point 5’s value in raw counts
specifies the x coordinate of point 5.

X6 55350 Real RW 0
Point 6’s value in raw counts
specifies the x coordinate of point 6.

X7 55351 Real RW 0
Point 7’s value in raw counts
specifies the x coordinate of point 7.

X8 55352 Real RW 0
Point 8’s value in raw counts
specifies the x coordinate of point 8.

X9 55353 Real RW 0
Point 9’s value in raw counts
specifies the x coordinate of point 9.

XA 55361 Real RW 0
Point 10’s value in raw counts
specifies the x coordinate of point 10.

XB 55362 Real RW 0
Point 11’s value in raw counts
specifies the x coordinate of point 11.

Y1 55601 Real RW 0
Point 1’s value in engineering units
specifies the y coordinate of point 1.

Y2 55602 Real RW 0
Point 2’s value in engineering units
specifies the y coordinate of point 2.

Y3 55603 Real RW 0
Point 3’s value in engineering units
specifies the y coordinate of point 3.

Y4 55604 Real RW 0
Point 4’s value in engineering units
specifies the y coordinate of point 4.

Y5 55605 Real RW 0
Point 5’s value in engineering units
specifies the y coordinate of point 5.

Y6 55606 Real RW 0
Point 6’s value in engineering units
specifies the y coordinate of point 6.
A-14 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES PIECEWISE CURVES
Y7 556017 Real RW 0
Point 7’s value in engineering units
specifies the y coordinate of point 7.

Y8 55608 Real RW 0
Point 8’s value in engineering units
specifies the y coordinate of point 8.

Y9 55609 Real RW 0
Point 9’s value in engineering units
specifies the y coordinate of point 9.

YA 55617 Real RW 0
Point 10’s value in engineering units
specifies the y coordinate of point 10.

YB 55618 Real RW 0
Point 11’s value in engineering units
specifies the y coordinate of point 11.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-15

ANALOG OUTPUTS APPENDIX A: OBJECTS & PROPERTIES
A.5 ANALOG OUTPUTS

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Analog Output (1),

Instance 1-72
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Analog Output N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Analog Output (1) indicates membership in a particular object type class.

present_value 85 Real RW 0.0 indicates the current value, in engineering units, of the object.

status_flags 111
BACnet
Status
Flags

RO 0 four flags that indicate the general health of the program.

event_state 36
BACnet
Event
State

RO 0
provides a way to determine if this object has an active event state
associated with it.

 reliability 103 BACnet
Reliability

RO 0
indicates whether the present_value is reliable as far as the device or
operator can determine.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

units 117
BACnet

Eng.
Units

RW 95 indicates the measurement units of this object.

min_pres_value 69 Real RW 0.0
indicates the lowest number that can be reliably used for the
present_value property of this object.

max_pres_value 65 Real RW 100.0
indicates the highest number that can be reliably used for the
present_value property of this object.

resolution 106 Real RO 0.024414
indicates the smallest recognizable change in present_value in
engineering units (read-only).

priority_array 87
BACnet
Array

RO NULL contains prioritized commands that are in effect for this object.

relinquish_
default

104 Real RW 0.0
 the default value to be used for the present_value property when all
command priority values in the priority_array property have a NULL
value.

time_delay 113 Unsigned RW 0

specifies the minimum period of time in seconds during which the
present_value must be different from the alarm_value property before
a TO-OFFNORMAL event is generated or must remain equal to the
alarm_value property before a TO-NORMAL event is generated.

notification_
class

17 Unsigned RW 1
specifies the notification class to be used when handling and
generating event notifications for this object.

high_limit 45 Real RW 0.0
specifies a limit that the present_value must exceed before an event is
generated.

low_limit 59 Real RW 0.0
specifies a limit below which the present_value must fall before an
event is generated.

deadband 25 Real RW 0.0
specifies a range between the high_limit and low_limit properties
within which the present_value must remain for a TO-NORMAL event
to be generated
A-16 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES ANALOG OUTPUTS
limit_enable 52
BACnet

Limit
Enable

RW 0
enables and disables reporting of High Limit and Low Limit off normal
events and their return to normal.

event_enable 35

BACnet
Event
Trans.

Bits

RW 0
 three flags that separately enable and disable reporting of TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events.

acked_
transitions

0

BACnet
Event
Trans.

Bits

RW 7
 three flags that separately indicate the receipt of acknowledgments for
TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events.

notify_type 72
BACnet
Notify
Type

RW 0
specifies whether the notifications generated by the object should be
Events or Alarms.

event_time_stam
ps

130
BACnet
ARRAY

RO -
defines the time stamps for when alarms for each limit type have been
sent.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

O1 53041
BACnet
ObjID

RW -
AutoStuff Input Object
specifies the object identifier target for pulling values in.

P1 53297 Unsigned RW -
AutoStuff Input Property
specifies the property for the object identifier target.

Q1 53553 Unsigned RW -
AutoStuff Mode/Priority
specifies the priority-level or mode for pulling data in.

FB 50754 CharStr RO
Feedback Text
provides diagnostic feedback information regarding the status of how
the output is being controlled.

LS 52307 Real RW 0
Minimum Scaled Voltage
specifies the percentage of the total output for
present_value=min_pres_value.

HS 51283 Real RW 100
Maximum Scaled Voltage
specifies the percentage of the total output for
present_value=max_pres_value.

OV 53078 Real RO
Actual Output Voltage
provides the actual voltage outputted by the I/O Processor.

OC 53059 Real RO
Actual Output Current
provides the actual current outputted by the I/O Processor.

UT 54612 Real RW -
Update Threshold
specifies the time, in seconds, in which the physical output voltage or
current is updated.

RH 53832 Unsigned RW -
Run Hours
specifies, in hours, how long the Analog Output has sent constant
voltage or current.

EA 50497 Boolean RW False
Enable Alarming
specifies if alarming should be enabled for the object. When set to
False, all alarming properties will be unavailable for selection.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-17

ANALOG OUTPUTS APPENDIX A: OBJECTS & PROPERTIES
GI 51017 Unsigned RW 0

GID of I/O Device
indicates the global identification number of the STATbus device
associated with the analog output. If the output does not have a
STATbus device mapped to it, GI will be 0.

O# 53027 Unsigned RW 0
Output Index of I/O Device
indicates the AO number that the Analog Output object will focus upon.
For example, if you monitor AO2 on an IOX1-1, set O# = 2

MN 52307 Real RW 0
Minimum Scaled Voltage
specifies the percentage of the total output for
present_value=min_pres_value.

MX 51283 Real RW 100
Maximum Scaled Voltage
specifies the percentage of the total output for
present_value=max_pres_value.

OU 53077 Boolean RO -
Actual Output Value
specifies the actual output state of the output. This may differ from the
current value because of delays and other effects.

UT 54612 Real RW 0
Update Threshold
specifies a threshold value by which present_value must change
before the output is updated.

Property Identifier # Data Type Access Default Value Description
A-18 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES BINARY OUTPUTS
A.6 BINARY OUTPUTS

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Binary Output (4),

 Instance 1-72
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Digital Output N represents a name for the object that is unique internetwork-wide.

object_type 79 Enum RO Binary Output (4) indicates membership in a particular object type class.

present_value 85 Enum RW 0 indicates the current value, in engineering units, of the object.

status_flags 111 Bit Str RO 0 four flags that indicate the general health of the program.

event_state 36 Enum RO 0
provides a way to determine if this object has an active event state
associated with it.

reliability 103 Enum RO 0
indicates whether the present_value is reliable as far as the device or
operator can determine.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

polarity 84 Enum RW 0

indicates the relationship between the physical state of the output and
the logical state represented by the present_value property. If the
polarity property is NORMAL, then the ACTIVE state of the
present_value property is also the ACTIVE or ON state of the physical
output as long as out_of_service is FALSE. If the Polarity property is
REVERSE, then the ACTIVE state of the present_value property is
the INACTIVE or OFF state of the physical output as long as
out_of_service is FALSE.

inactive-text 46 CharStr RW Off specifies the text for an OWS to use when the present-value = Inactive.

active-text 4 CharStr RW On specifies the text for an OWS to use when present-value = Active.

minimum_off_
time

66 Unsigned RW 0
specifies the minimum number of seconds that the present_value
shall remain in the INACTIVE state after a write to the present_value
property causes that property to assume the INACTIVE state.

minimum_on_
time

67 Unsigned RW 0
indicates the minimum number of seconds that the present_value
shall remain in the ACTIVE state after a write to the present_value
property causes that property to assume the ACTIVE state.

priority_array 87
BACnet
Array

RO NULL contains prioritized commands that are in effect for this object.

relinquish_
default

104 Real RW 7
 the default value to be used for the present_value property when all
command priority values in the priority_array property have a NULL
value.

time_delay 113 Unsigned RW 0

specifies the minimum period of time in seconds during which the
present_value must be different from the alarm_value property before
a TO-OFFNORMAL event is generated or must remain equal to the
alarm_value property before a TO-NORMAL event is generated.

notification_
class

17 Unsigned RW 0
specifies the notification class to be used when handling and
generating event notifications for this object.

feedback_value 40
BACnet

BinaryPV
- Inactive

specifies the value that the Present_Value property must have before a
TO-OFFNORMAL event is generated.
MatrixBBC Programmers Guide (10/5/2012) A-19

BINARY OUTPUTS APPENDIX A: OBJECTS & PROPERTIES
event_enable 35

BACnet
Event
Trans.

Bits

RW 0
 three flags that separately enable and disable reporting of TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events.

acked_
transitions

0

BACnet
Event
Trans.

Bits

RW 7
 three flags that separately indicate the receipt of acknowledgments for
TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events.

notify_type 72
BACnet
Notify
Type

RW 0
specifies whether the notifications generated by the object should be
Events or Alarms.

event_time_stam
ps

130
BACnet
ARRAY

RO -
defines the time stamps for when alarms for each limit type have been
sent.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

O1 53041
BACnet
ObjID

RW -
AutoStuff Input Object
specifies the object identifier target for pulling values in.

P1 53297 Unsigned RW -
AutoStuff Input Property
specifies the property for the object identifier target.

Q1 53553 Unsigned RW -
AutoStuff Mode/Priority
specifies the priority-level or mode for pulling data in.

OU 53077 Unsigned RO -
Actual Output State
specifies the actual output state of the output. This may differ from the
current value because of delays and other effects.

PW 53335 Real RW 0

Pulse Width when Output is On
specifies the “on” time (present_value=1) in seconds (0.0 to 25.5) that
the output should remain on after a transition from the off to on state.
0=Disabled
0.1-25.5=pulse “on” duration in seconds

RH 53832 Real RW 0
Run Hours
indicates the number of hours present_value=1 for the input.

EA 50497 Boolean RW False
Enable Alarming
specifies if alarming should be enabled for the object. When set to
False, all alarming properties will be unavailable for selection.

AF 49478 CharStr RO
AutoStuff Feedback Text
provides diagnostic feedback information regarding the status of how
the output is being controlled.

GI 51017 Unsigned RW 0

GID of I/O Device
indicates the global identification number of the STATbus device
associated with the analog output. If the output does not have a
STATbus device mapped to it, GI will be 0.

O# 53027 Unsigned RW 0
Output Index of I/O Device
indicates the BO number that the Binary Output object will focus upon.
For example, if you monitor BO on an IOX1-1, set O# = 2

Property Identifier # Data Type Access Default Value Description
A-20 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES STATBUS SUMMARY
A.7 STATBUS SUMMARY

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO Proprietary (204),
Instance 0

 a numeric code that is used to identify the object.

object_name 77 CharStr RW STATbus N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (204) indicates membership in a particular object type class.

PU 53333 Unsigned RW 0
User PIN
Defines the PIN password for accessing the user menu (setpoint
adjust, and override functions) from a STAT/RHT product.

PI 53321 Unsigned RW 3300
Install PIN
Defines the PIN password for accessing the install menu from a STAT/
RHT product.

PS 53331 Unsigned RW 1100
Service PIN
Defines the PIN password for accessing the service menu from a
STAT/RHT product.

LT 52308 Unsigned RW 5
STAT Inactivity Logout Timer
Defines the amount of time, in minutes, that

S1 54065
BACnet
Array

RO -
STATBus 1 Devices
Provides a read-only display of all STAT and IOX modules connected
to STATbus Port 1.

CR 50002 Unsigned RW 0

Configure Remote I/O
Used to configure the MatrixBBC to perform Expandable I/O mapping
configuration.

0 = Normal
1 = MatrixBBC to Bus
2 = Edit I/O GIDs
MatrixBBC Programmers Guide (10/5/2012) A-21

STATBUS APPENDIX A: OBJECTS & PROPERTIES
A.8 STATBUS

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (450),

Instance 1
 a numeric code that is used to identify the object.

object_name 77 CharStr RW STATbus 1 represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (450) indicates membership in a particular object type class.

G1 50993 Unsigned RW 0
GID Device 1
indicates the global identification number of device 1.

G2 50994 Unsigned RW 0
GID Device 2
indicates the global identification number of device 2.

G3 50995 Unsigned RW 0
GID Device 3
indicates the global identification number of device 3.

G4 50996 Unsigned RW 0
GID Device 4
indicates the global identification number of device 4.

G5 50997 Unsigned RW 0
GID Device 5
indicates the global identification number of device 5.

G6 50998 Unsigned RW 0
GID Device 6
indicates the global identification number of device 6.

G7 50999 Unsigned RW 0
GID Device 7
indicates the global identification number of device 7.

G8 51000 Unsigned RW 0
GID Device 8
indicates the global identification number of device 8.

G9 51001 Unsigned RW 0
GID Device 9
indicates the global identification number of device 9.

GA 51009 Unsigned RW 0
GID Device 10
indicates the global identification number of device 10.

GB 510010 Unsigned RW 0
GID Device 11
indicates the global identification number of device 11.

GC 51011 Unsigned RW 0
GID Device 12
indicates the global identification number of device 12.

GD 51012 Unsigned RW 0
GID Device 13
indicates the global identification number of device 13.

SM 54093 BitStr RO 0
Status Map
1=unconfigured
2=duplicate
A-22 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES PROGRAMS 1-64
A.9 PROGRAMS 1-64

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Program (16),
Instance 1-64

 a numeric code that is used to identify the object.

object_name 77 CharStr RW
Program N
(unloaded)

represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO
-

Program (16)
indicates membership in a particular object type class.

program_state 92
BACnet
Program

State
RO 0

indicates the current logical state of the process executing the
application program this object represents.

program_change 90
BACnet
Program
Request

RW 0
used to request changes to the operating state of the process this
object represents.

reason_for_halt 100
BACnet
Program

Error
RO 0 indicates the reason why the program was halted.

description_of_
halt

29 CharStr RO - describes the reason why a program has been halted.

program_
location

91 CharStr RO Sec0:0x0000
indicate the current location within the program code, for example, a
line number or program label or section name.

status_flags 111
BACnet
Status
Flags

RO 0 four flags that indicate the general health of the program.

reliability 103 BACnet
Reliability

RO 0
indicates whether the program is running/waiting (no fault detected) or
is unreliable (process-error)

out_of_service 81 Boolean RO
0

indicates whether or not the process this object represents is not in
service.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

$1 42033 Boolean RW 0

Enable Single-Step Mode?
specifies whether the single-step, line by line debugging mode is
enabled.

0=No
1=Yes

$D 42052 Unsigned RW 0
Delay Time Remaining
specifies the number of seconds remaining when an SWAIT or MWAIT
statement is encountered in the SPL program.

$E 42053 Unsigned RW 0
Error Code
indicates the SPL error code that is returned when the program aborts.

$F 42054 Unsigned RO -

Device Instance Not Found
indicates a device instance that could not be communicated with when
attempting to interact with objects from remote devices. This property
displays the last device id that an error occured with.
MatrixBBC Programmers Guide (10/5/2012) A-23

PROGRAMS 1-64 APPENDIX A: OBJECTS & PROPERTIES
$W 42071 Unsigned RW 0

Trappable Error Action
specifies how the SPL program should handle trappable errors.

0=Abort on Error
1=Wait on Error

$N 46062 Unsigned RW 0
Number of Program Attributes
indicates the number of initialized properties defined in the program
using the PROP statement.

%A 42305 Unsigned RW 0
Register A Value
indicates the value of program register A.

%B 42306 Unsigned RW 0
Register B Value
indicates the value of program register B.

%C 42307 Unsigned RW 0
Register C Value
indicates the value of program register C.

%D 42308 Unsigned RW 0
Register D Value
indicates the value of program register A.

%E 42309 Unsigned RW 0
Register E Value
indicates the value of program register E.

%F 42310 Unsigned RW 0
Register F Value
indicates the value of program register F.

%G 42311 Unsigned RW 0
Register G Value
indicates the value of program register G.

%H 42312 Unsigned RW 0
Register H Value
indicates the value of program register H.

%I 42313 Unsigned RW 0
Register I Value
indicates the value of program register I.

%J 42314 Unsigned RW 0
Register J Value
indicates the value of program register J.

%K 42315 Unsigned RW 0
Register K Value
indicates the value of program register K.

%L 42316 Unsigned RW 0
Register L Value
indicates the value of program register L.

%M 42317 Unsigned RW 0
Register M Value
indicates the value of program register M.

%N 42318 Unsigned RW 0
Register N Value
indicates the value of program register N.

%O 42319 Unsigned RW 0
Register O Value
indicates the value of program register O.

%P 42320 Unsigned RW 0
Register P Value
indicates the value of program register P.

Property Identifier # Data Type Access Default Value Description
A-24 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES FILE0
A.10 FILE0

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO File (10), Instance 0 a numeric code that is used to identify the object.

object_name 77 CharStr RW FILE0 represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO File (10) indicates membership in a particular object type class.

description 28 CharStr RO Flash Upgrade
provides a description of the object. This object is intended for flash
updates.

file_type 43 CharStr RO Flash Upgrade identifies the intended use of this file.

file_size 42 Unsigned RO 327680 indicates the size of the file data.

modification_
date

71
BACnet

Date
Time

RO NULL indicates the last time this object was modified.

archive 13 Boolean RW 1
indicates whether the File object has been saved for historical or
backup purposes.

read_only 99 Boolean RO 0
indicates whether or not the file data may be changed through the use
of a BACnet Atomic Write File service.

file_access_
method

41

BACnet
File

Access
Method

RO 1 indicates the type(s) of file access supported for this object.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.
MatrixBBC Programmers Guide (10/5/2012) A-25

PLB1-64 APPENDIX A: OBJECTS & PROPERTIES
A.11 PLB1-64

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO File (10), Instance
1-64

 a numeric code that is used to identify the object.

object_name 77 CharStr RW
RAMN, PLBN, or

LOGON
represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO File (10) indicates membership in a particular object type class.

description 28 CharStr RO Flash Upgrade
provides a description of the object. This object is intended for flash
updates. The description is the same as the file_type.

file_type 43 CharStr RO RAMN

identifies the intended use of this file.

The possible file types are:
Empty Region n
System File n
Trend File n
Table File n
Program Logic Block n
Program Reference Block n
Program Control Block n
Display List n
Custom Logo n

file_size 42 Unsigned RW -
indicates the size of the file data. Writing a value of zero to this
property will clear out any program or other file currently loaded.

modification_
date

71
BACnet

Date
Time

RO NULL indicates the last time this object was modified.

archive 13 Boolean RW 0
indicates whether the File object has been saved for historical or
backup purposes.

read_only 99 Boolean RO 0
indicates whether or not the file data may be changed through the use
of a BACnet Atomic Write File service.

file_access_
method

41

BACnet
File

Access
Method

RO 1 indicates the type(s) of file access supported for this object.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.
A-26 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES ANALOG PID
A.12 ANALOG PID

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (500),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Analog PID N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (500) indicates membership in a particular object type class.

present_value 85 Real RW 0
indicates the current calculated analog output value determined by the
control loop. For direct control of AO’s, this value is retrieved by the
AO’s AutoStuff feature.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

CE 49989 Boolean RW 0

Enable Control Loop?
enables/disables PID control.

0=No
1=Yes

CS 50003 Real RO 0
Calculated Control Setpoint
specifies the effective (calculated) setpoint accounting for setup/
setback, manual setpoint adjustments, etc.

DB 50242 Real RW 0

Desired Control Deadband
specifies the deadband that is used to control cycling around the
setpoint. If the current value of the input object is between SP-(DB/2)
and SP+(DB/2), the measured variable is considered to be at its
setpoint.

IO 51535
BACnet
ObjID

RW
Input Object
specifies the object identifier that will be used as the measured variable
for control calculations.

IP 51536 Unsigned RW
Input Property
specifies the property of the object identifier that will be used as the
measure variable for control calculations.

IV 51542 Real RO
Input’s Present Value
reflects the current value of the referenced input object-property
specified using IO and IP.

OO 53071
BACnet
ObjID

RW
Interlock Override Object
specifies the object identifier that will be used to detect a boolean value
for interlocking.

OP 53072 Unsigned RW
Interlock Override Property
specifies the property of the object identifier that will be used to detect a
boolean value for interlocking.

OV 53078 Boolean RO
Interlock Override’s Present State
reflects the current value of the referenced interlock object-property
used for interlocking.

OH 53064 Real RW
100

Output High Limit
defines the maximum output for the PID control loop.

OL 53068 Real RW
0

Output Low Limit
defines the minimum output for the PID control loop.
MatrixBBC Programmers Guide (10/5/2012) A-27

ANALOG PID APPENDIX A: OBJECTS & PROPERTIES
PB 53314 Real RW
0

Proportional Control Band
specifies a range, centered around the loop setpoint SP, where the
output signal is proportional. If the value of the selected input object is
outside the proportional band, the proportional component of the PID
calculation is clamped at OL or OH as appropriate.

PO 53327 Real RW
0

Percent Output Value
displays the calculated output of the PID control loop. PO ranges from
OL to OH.

RT 53844 Real RW
0

Derivative Rate
specifies a a percentage of the amount of derivative error that is
contributed each second to the PID output of the control loop (0.0 to
25.5%).

0.0=Disable
0.1 to 25.5=Derivative rate in%/second

RP 53840 Unsigned RW
0

Reset Period
specifies a time, in seconds (0 to 65,535) over which the output of the
control loop should be adjusted (reset) using integral action.

0=Disabled
1 to 65,535=Integral reset period, in seconds

RC 53827
BACnet
ObjID

RW
0

<Reset Feature> Reset Object
specifies the object to be used as the reset variable for the PID control
loop.

RA 53825 Unsigned RW
00

<Reset Feature> Reset Property
specifies the property associated with the object specified in RC to be
used as the reset variable for the PID control loop.

MR 52562 Real RW
0

<Reset Feature> Maximum Amount to Reset Setpoint
the maximum amount to reset the control loop setpoint.

RL 53836 Real RW
0

<Reset Feature> Limit for Maximum Reset
specifies the reset limit of the control loop. When RV reaches a value of
RL, the control loop setpoint will be reset by the maximum amount RV.

RS 53843 Real RW
0

<Reset Feature> Setpoint at which Reset Action Begins
specifies the setpoint of the control loop at which reset action begins.

SG 54087 Unsigned RW
0

Control Action
specifies whether the controller’s output should be increased or
decreased when error is positive.

0=Normal (increase for positive error)
1=Reverse (decrease for positive error)

SM 54093 BitStr RW
0

Schedules to Follow
enables scheduled alarm controlling for the associated PID control loop
by selecting one or more of the available schedule control objects.

0=Schedule disabled
1=Schedule enabled

SM is a bitmap where:
bit 0=Schedule 1
up to...
bit 31=Schedule 32

US 54611 Real RW
0.0

Unoccupied Setpoint <Sched=0>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Unoccupied
Mode.

Property Identifier # Data Type Access Default Value Description
A-28 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES ANALOG PID
WS 55123 Real RW
0.0

Warmup Setpoint <Sched=1>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Warmup Mode.

OS 53075 Real RW
0.0

Occupied Setpoint <Sched=2>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Occupied Mode.

NS 52819 Real RW
0.0

Night Setback Setpoint <Sched=3>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Night Setback
Mode.

SR 54098 Unsigned RW
100

Soft Start Ramp
specifies the maximum percentage change per minute for the
associated output under he following conditions: when the controller is
initially powered up or reset; upon transitions from unoccupied to
occupied mode, upon cancellation of an interlock failure or fire
condition, or when a control loop is initially enabled.

DL 50252 Real RO
0.0

Demand Load
indicates the heating/cooling demand in terms of the temperature
separation from setpoints

MO 52559 Real RW
-

STAT Maximum Override Offset (used as +/-)
specifies the maximum adjust amount that the control setpoint can be
adjusted from a linked STAT.

CO 49999 Real RO
-

STAT Current Override Offset
indicates the current setpoint offset commanded by the user.

OR 53074 Unsigned RO
-

STAT Override Time Remaining
indicates the current remaining time for override mode.

FB 50754 CharStr RO
-

Feedback Text
indicates diagnostic feedback of the control loop for troubleshooting.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-29

PULSE PAIR PID APPENDIX A: OBJECTS & PROPERTIES
A.13 PULSE PAIR PID

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (501),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Pulse-Pair PID N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (501) indicates membership in a particular object type class.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

CE 49989 Unsigned RW 0

Enable Control Loop?
enables/disables floating point control for the associated control loop.

0=No
1=Yes

CF 49990 Unsigned RW 0

Communication Failure Enable?
specifies what action to take in the event that a communication failure
is detected.

0=No
1=Yes

CP 50000 Real RO 0
Current Position
indicates the current position of the motor.

CR 50002 Unsigned RW 0

Creep Enable
specifies how the controller handles automatic calibrations at minimum
and maximum positions.

0=Drive motor constantly if DP=0% or DP=100%
1=Creep motor output by 1% per minute if DP=0% or DP=100%

SG 54087 Unsigned RW 0

Control Action
specifies whether the controller’s output should be increased or
decreased when the control signal is positive.

0=Normal (increase for positive error)
1=Reverse (decrease for positive error)

CS 50003 Real RO 0
Calculated Control Setpoint
indicates the calculated control setpoint. This value accounts for any
reset or setup/setback action on the loop setpoint.

DB 50242 Real RW 0

Desired Control Deadband
specifies the deadband that is used to control cycling around the
setpoint. If the current value of the input object is between SP-(DB/2)
and SP+(DB/2), the measured variable is considered to be at its
setpoint

DP 50256 Real RW 0
Desired Position
specifies the desired output position (0-100%) of the associated motor.

IO 51535
BACnet
ObjID

RW -
Input Object
specifies the object identifier that will be used as the measured variable
for control calculations.

IP 51536 Unsigned RW -
Input Property
specifies the property of the object identifier that will be used as the
measure variable for control calculations.
A-30 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES PULSE PAIR PID
IV 51542 Real RO -
Input’s Present Value
reflects the current value of the referenced input object-property
specified using IO and IP.

PB 53314 Real RW 0
Proportional Control Band
specifies a range, centered around the loop setpoint SP, where the
output signal is proportional.

RP 53840 Unsigned RW 0

Reset Period
specifies a time, in seconds (0 to 65,535) over which the output of the
control loop should be adjusted (reset).

0=Diabled
1 to 65,535=Reset period, in seconds

RC 53827
BACnet
ObjID

RW 0
<Reset Feature> Reset Object
specifies the object to be used as the reset variable for the PID control
loop.

RA 53825 Unsigned RW 00
<Reset Feature> Reset Property
specifies the property associated with the object specified in RC to be
used as the reset variable for the PID control loop.

MR 52562 Real RW 0
<Reset Feature> Maximum Amount to Reset Setpoint
the maximum amount to reset the control loop setpoint.

RL 53836 Real RW 0
<Reset Feature> Limit for Maximum Reset
specifies the reset limit of the control loop. When RV reaches a value of
RL, the control loop setpoint will be reset by the maximum amount RV.

RS 53843 Real RW 0
<Reset Feature> Setpoint at which Reset Action Begins
specifies the setpoint of the control loop at which reset action begins.

SM 54093 BitStr RW 0

Schedules to Follow
enables scheduled alarm controlling for the associated PID control loop
by selecting one or more of the available schedule control objects.

0=Schedule disabled
1=Schedule enabled

SM is a bitmap with:
bit 0=Schedule 1
up to...
bit 31=Schedule 32

US 54611 Real RW 0.0

Unoccupied Setpoint <Sched=0>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Unoccupied
Mode.

WS 55123 Real RW 0.0
Warmup Setpoint <Sched=1>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Warmup Mode.

OS 53075 Real RW 0.0
Occupied Setpoint <Sched=2>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Occupied Mode.

NS 52819 Real RW 0.0

Night Setback Setpoint <Sched=3>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Night Setback
Mode.

TT 54356 RW 0
Motor Travel Time
specifies the time, in seconds (0-3000), that it takes the motor to move
from its fully closed to its fully open positions.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-31

PULSE PAIR PID APPENDIX A: OBJECTS & PROPERTIES
RI 53833 Unsigned RW 0

Motor Recalibrate Interval
specifies a time interval in hours (0-255) the defines how often the
associated floating point control loop is recalibrated.

0=Calibration disabled
RI > 0 =Recalibrate every RI hours

DL 50252 Real RO -
Demand Load
indicates the heating/cooling demand in terms of the temperature
separation from setpoints

MO 52559 Real RW -
STAT Maximum Override Offset (used as +/-)
specifies the maximum adjust amount that the control setpoint can be
adjusted from a linked STAT.

CO 49999 Real RO -
STAT Current Override Offset
indicates the current setpoint offset commanded by the user.

OR 53074 Unsigned RO -
STAT Override Time Remaining
indicates the current remaining time for override mode.

O1 53041 Boolean RO -
Output #1 (Load)
indicates open action as determined by the control loop. For direct
control of BO’s, this value is retrieved by the BO’s AutoStuff feature.

O2 53042 Boolean RO -
Output #2 (Unload)
indicates closed action as determined by the control loop. For direct
control of BO’s, this value is retrieved by the BO’s AutoStuff feature.

FB 50754 CharStr RO -
Feedback Text
indicates diagnostic feedback of the control loop for troubleshooting.

Property Identifier # Data Type Access Default Value Description
A-32 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES THERMOSTATIC CONTROL
A.14 THERMOSTATIC CONTROL

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (502),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW
Thermostatic Control

N
represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (502) indicates membership in a particular object type class.

present_value 85 Real RW 0
indicates the current output value for control. For direct control of BO’s,
this value is retrieved by the BO’s AutoStuff feature.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

CE 49989 Boolean RW 0

Enable Control Loop?
enables/disables thermostatic control for the associated control loop.

0=Disabled
1=Enabled

MD 52548 Unsigned RW 0

Mode
Specifies the control sign for the loop, based on season or schedule.

0=Heating in Winter <Else Off>
1=Heating in Winter <Else Seasonal Setback>
2=Cooling in Summer <Else Off>
3=Cooling in Summer <Else Seasonal Setback>

SS 54099 Boolean RW 0
Season
Defines the current season, used specifically for seasonal setback
applications.

US 54611 Real RW 0.0

Unoccupied Setpoint <Sched=0>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Unoccupied
Mode.

WS 55123 Real RW 0.0
Warmup Setpoint <Sched=1>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Warmup Mode.

OS 53075 Real RW 0.0
Occupied Setpoint <Sched=2>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Occupied Mode.

NS 52819 Real RW 0.0

Night Setback Setpoint <Sched=3>
specifies the setpoint under which the control loop shall operate when a
selected, properly configured schedule from SM is in Night Setback
Mode.

DB 50242 Real RW 0
Desired Control DeadBand
specifies a control hysteresis that is used to keep present_value from
toggling when the value is on the border between two states.

SO 54095 Real RW 0.0
Seasonal Setup/Setback <for Modes 1 and 3>
specifies the amount of setback to apply to all four setpoints when
seasonal setback is in effect.
MatrixBBC Programmers Guide (10/5/2012) A-33

THERMOSTATIC CONTROL APPENDIX A: OBJECTS & PROPERTIES
SM 54093 BitStr RW 0

Schedules to Follow
enables scheduled alarm controlling for the associated PID control loop
by selecting one or more of the available schedule control objects.

0=Schedule disabled
1=Schedule enabled

SM is a bitmap with:
bit 0=Schedule 1
up to...
bit 31=Schedule 32

IO 51535
BACnet
ObjID

RW -
Input Object
specifies the object identifier that will be used as the measured variable
for control calculations.

IP 51536 Unsigned RW -
Input Property
specifies the property of the object identifier that will be used as the
measure variable for control calculations.

IV 51542 Real RO -
Input’s Present Value
reflects the current value of the referenced input object-property
specified using IO and IP.

CS 50003 Real RO 0

Calculated Control Setpoint
specifies the calculated (actual) control setpoint that is used by the
thermostatic control loop. CS accounts for the effects of seasonal
setup/setback (SO) during scheduled seasonal modes.

MO 52559 Real RW -
STAT Maximum Override Offset (used as +/-)
specifies the maximum adjust amount that the control setpoint can be
adjusted from a linked STAT.

CO 49999 Real RO -
STAT Current Override Offset
indicates the current setpoint offset commanded by the user.

OR 53074 Unsigned RO -
STAT Override Time Remaining
indicates the current remaining time for override mode.

DL 50252 Real RO -
Demand Load
indicates the heating/cooling demand in terms of the measured
variable separation from setpoints

SF 54086 CharStr RO -
Schedule Feedback
indicates diagnostic feedback relative to how schedule control is
affecting the control loop.

MF CharStr RO -
Mode Feedback
indicates diagnostic feedback relative to how the current mode is
affecting the control loop.

TF CharStr RO -
Temperature Feedback
indicates diagnostic feedback relative to when action will occur based
on programmed setpoints, schedule mode, etc.

Property Identifier # Data Type Access Default Value Description
A-34 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES SCHEDULES
A.15 SCHEDULES

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Schedule (17),
Instance 1-32

 a numeric code that is used to identify the object.

object_name 77 CharStr RW Schedule N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Schedule (17) indicates membership in a particular object type class.

present_value 85 -any- RO -
specifies the current value written to the list-of-object-property-
references by the object.

effective_period 32
BACnet
Range

RW - defines the effective range for the schedule.

weekly-schedule 123
BACnetA

rray
RW -

defines the weekly operating schedule (Monday thru Sunday). Each
day of the week may contain up to 20 time,value pairs that provide
programmatic schedule control.

exception_sched
ule

38
BACnetA

rray
RW -

defines the exception-schedule, typically overriding the weekly-
schedule. Exceptions are based off a Calendar reference, date
reference, or even an object reference (boolean). Up to 5 exception
events may be programmed into the exception schedule, each with a
maximum of 20 time, value pairs.

schedule-default 174 -any- RW -

defines the data-type and default value that the schedule shall assume
if no weekly or exception data is programmed for a specific day. This
value is also used for situations where a weekly-schedule entry
commands the schedule to resume default operations.

list_of_object_pr
operty_reference

s
54

BACnet
List

RW -
defines the list of object properties which the schedule will write values
to based on time, value pairs entered into the weekly-schedule or
exception-schedule.

status_flags 111
BACnet
Status
Flags

RO 0 four flags that indicate the general health of the program.

 reliability 103 BACnet
Reliability

RO 0
indicates whether the present_value is reliable as far as the device or
operator can determine.

out_of_service 81 Boolean RW 0

indicates whether or not the process this object represents is not in
service. When out-of-service = true, the present-value property is
freely writable. Any value written to present-value during times when
out-of-service is true will be written down to the object-properties
referenced in list-of-object-property-references.

priority-for-
writing

88 Unsigned RW 11
defines the priority level used for writing values to commandable
objects such as AOs and BOs.

DT 50260 -any- RW 2

Schedule Default Data Type
defines the datatype used for programmatic scheduling. Valid data
types include:

1=Boolean
2=Unsigned
3=Integer
4=Real
9=Enumerated
10=Date
11=Time
12=BACnet ObjectID

FB 50754 Boolean RO -
Feedback Text
provides diagnostic details regarding the operation of the schedule.
MatrixBBC Programmers Guide (10/5/2012) A-35

SCHEDULES APPENDIX A: OBJECTS & PROPERTIES
CU 50005 Boolean RO -

Currently Unoccupied Flag <0>
specifies if the Schedule is currently in Unoccupied mode. In order a
schedule to be unoccupied, the Schedule must be configured to use an
Unsigned data-type and use the classic four-mode AAM Schedules.

CW 50007 Boolean RO -

Currently Warmup Flag <1>
specifies if the Schedule is currently in Warmup mode. In order a
schedule to be unoccupied, the Schedule must be configured to use an
Unsigned data-type and use the classic four-mode AAM Schedules.

CO 49999 Boolean RO -

Currently Occupied Flag <2>
specifies if the Schedule is currently in Occupied mode. In order a
schedule to be unoccupied, the Schedule must be configured to use an
Unsigned data-type and use the classic four-mode AAM Schedules.

CS 50003 Boolean RO -

Currently Night Setback Flag <3>
specifies if the Schedule is currently in Night Setback mode. In order a
schedule to be unoccupied, the Schedule must be configured to use an
Unsigned data-type and use the classic four-mode AAM Schedules.

ON 53070 Boolean RO -

Currently On Flag <1 or 2>
specifies if the Schedule is currently in Off or in Unoccupied mode. In
order a schedule to be unoccupied, the Schedule must be configured to
use an Enumerated data-type where 0=Unoccupied and 1=Occupied

OF 53062 Boolean RO -

Currently Off Flag <0 or 3>
specifies if the Schedule is currently in On or in Occupied mode. In
order a schedule to be unoccupied, the Schedule must be configured to
use an Enumerated data-type where 0=Unoccupied and 1=Occupied

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

Property Identifier # Data Type Access Default Value Description
A-36 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES CALENDARS
A.16 CALENDARS

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Calendar (6),
Instance 1-32

 a numeric code that is used to identify the object.

object_name 77 CharStr RW Schedule N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Calendar (6) indicates membership in a particular object type class.

present_value 85 Boolean RO -
specifies the known local-date of the Device matches with an entry in
the datelist.

datelist 23 List RW -
specifies the list of date ranges, dates, or week-n-day entries that make
up special events or other programmatic data.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

OS 53075 Boolean RW False (0)

Auto Delete Stale Entries
clears expired valid M/D/Y entries from the datelist once they have
expired (when the local-date is after the entry in the list). This service
does not remove wild-card based entries and only applies to M/D/Y
entries that are considered one-shot entries.
MatrixBBC Programmers Guide (10/5/2012) A-37

NOTIFICATION CLASS APPENDIX A: OBJECTS & PROPERTIES
A.17 NOTIFICATION CLASS

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Notification Class

(15), Instances (0 - 9)
 a numeric code that is used to identify the object.

object_name 77 CharStr RW
NOTIFICATIONCLA

SS n
represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO
Notification Class

(15)
indicates membership in a particular object type class.

notification_
class

17 Unsigned RO 1
specifies the notification class to be used when handling and
generating event notifications for this object.

priority 86
BACnet
Array

RW 2
specifies the priority to be used for event notifications for TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events, respectively.

ack_required 1

BACnet
Event
Trans.

Bits

RW 1, 0, 1
 three separate flags that indicate whether acknowledgment shall be
required in notifications generated for TO-OFFNORMAL, TO-FAULT,
and TO-NORMAL event transitions, respectively.

recipient_list 102
BACnet

List
RW -

a list of one or more recipient destinations to which notifications shall
be sent when event-initiating objects using this class detect the
occurrence of an event.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

A1 49457 Boolean RO False (0)
defines is recipient 1 of the recipient-list is active and ready to route
alarms.

A2 49458 Boolean RO False (0)
defines is recipient 2 of the recipient-list is active and ready to route
alarms.

A3 49459 Boolean RO False (0)
defines is recipient 3 of the recipient-list is active and ready to route
alarms.

A4 49460 Boolean RO False (0)
defines is recipient 4 of the recipient-list is active and ready to route
alarms.

A5 49461 Boolean RO False (0)
defines is recipient 5 of the recipient-list is active and ready to route
alarms.
A-38 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES MATH
A.18 MATH

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (301),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Math N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (301) indicates membership in a particular object type class.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

present-value 85 Real RO - provides the result of the Math operation.

OP 53072 Unsigned RW 0

Operation
specifies the operation to be performed on the selected objects.

0=Disabled
1=Addition
2=Subtraction
3=Multiplication
4=Division
5=Minimum
6=Maximum
7=Average

I1 45361
BACnet
ObjID RW 0

Input Object 1
specifies the first input object

A1 49457 Unsigned RW 0
Input property 1
specifies the property associated with the first input object.

I2 45362
BACnet
ObjID RW 0

Input object 2
specifies the second input object.

A2 49458 Unsigned RW 0
Input property 2
specifies the property associated with the second input object.

GT 51028 Boolean RO -
Input 1 Is > Input 2?
indicates if the value of Input 1 is greater than the value of Input 2. A
true indication will be returned if true, else false.

GE 51013 Boolean RO -
Input 1 is >= Input 2?
indicates if the value of Input 1 is greater or equal to the value of Input
2. A true indication will be returned if true, else false.

LT 52308 Boolean RO -
Input 1 is < Input 2?
indicates if the value of Input 1 is less than the value of Input 2. A true
indication will be returned if true, else false.

LE 52293 Boolean RO -
Input 1 is <= Input 2?
indicates if the value of Input 1 is less than or equal to the value of Input
2. A true indication will be returned if true, else false.

ET 50516 Boolean RO -
Input 1 is = Input 2?
indicates if the value of Input 1 is equal to the value of Input 2. A true
indication will be returned if true, else false.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.
MatrixBBC Programmers Guide (10/5/2012) A-39

LOGIC APPENDIX A: OBJECTS & PROPERTIES
A.19 LOGIC

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (303),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Logic N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (303) indicates membership in a particular object type class.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

present-value 85 Real RO - provides the result of the operation.

I1 51505
BACnet
ObjID

RW 0
Input Object 1
specifies the first input object.

A1 49457 Unsigned RW 0
Input Property 1
specifies the property associated with the first input object.

I2 51506
BACnet
ObjID

RW 0
Input Object 2
specifies the second input object.

A2 49458 Unsigned RW 0
Input Property 2
specifies the property associated with the second input object.

I3 51507
BACnet
ObjID

RW 0
Input Object 3
specifies the third input object.

A3 49459 Unsigned RW 0
Input Property 3
specifies the property associated with the third input object.

I4 51508
BACnet
ObjID

RW 0
Input Object 4
specifies the fourth input object.

A4 49460 Unsigned RW 0
Input Property 4
specifies the property associated with the fourth input object.

I5 51509
BACnet
ObjID

RW 0
Input Object 5
specifies the fifth input object.

A5 49461 Unsigned RW 0
Input Property 5
specifies the property associated with the fifth input object.

I6 51510
BACnet
ObjID

RW 0
Input Object 6
specifies the sixth input object.

A6 49462 Unsigned RW 0
Input Property 6
specifies the property associated with the sixth input object.

I7 51511
BACnet
ObjID

RW 0
Input Object 7
specifies the seventh input object.

A7 49463 Unsigned RW 0
Input Property 7
specifies the property associated with the seventh input object.

I8 51512
BACnet
ObjID

RW 0
Input Object 8
specifies the eighth input object.

A8 49464 Unsigned RW 0
Input Property 8
specifies the property associated with the eighth input object.
A-40 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES LOGIC
AI 49481 BitStr RO -
Active Inputs
indicates which logic inputs are being actively monitored.

IV 51542 BitStr RO -
Input Current Values
indicates the current value of each monitored input.

RV 53846 BitStr RW 0
Inverted [Reversed] Inputs
defines the logic polarity of each input.

OP 53072 Unsigned RW 0

Operation
specifies the logic operation to be performed on the selected objects.

0=Diabled
1=OR
2=AND
3=NOT <Input 1>
4=XOR

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-41

MIN/MAX/AVG APPENDIX A: OBJECTS & PROPERTIES
A.20 MIN/MAX/AVG

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (301),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Min/Max/Avg N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (301) indicates membership in a particular object type class.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

HV 51286 Real RW 0
High Value
displays the highest value of the inputs selected.

LV 52310 Real RW 0
Low Value
displays the lowest value of the inputs selected.

AV 49494 Real RW 0
Average Value
displays the arithmetic mean of the inputs selected.

I1 51505
BACnet
ObjID

RW -
Input Object 1
specifies the object from which the first property to be used for min/
max/avg calculations can be selected.

A1 49457 Unsigned RW -
Input Property 1
specifies the property in the object selected in I1 to be used as the first
input min/max/avg calculations.

I2 51506
BACnet
ObjID

RW -
Input Object 2
specifies the object from which the second property to be used for min/
max/avg calculations can be selected.

A2 49458 Unsigned RW -
Input Property 2
specifies the property in the object selected in I2 to be used as the
second input min/max/avg calculations.

I3 51507
BACnet
ObjID

RW -
Input Object 3
specifies the object from which the third property to be used for min/
max/avg calculations can be selected.

A3 49459 Unsigned RW -
Input Property 3
specifies the property in the object selected in I3 to be used as the third
input min/max/avg calculations.

I4 51508
BACnet
ObjID

RW -
Input Object 4
specifies the object from which the fourth property to be used for min/
max/avg calculations can be selected.

A4 49460 Unsigned RW -
Input Property 4
specifies the property in the object selected in I4 to be used as the
fourth input min/max/avg calculations.
A-42 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES ENTHALPY
A.21 ENTHALPY

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (308),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Enthalpy N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (308) indicates membership in a particular object type class.

present-value 85 Real RO - provides the result of the operation.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

TO 54351
BACnet
ObjID

RW -
Temperature Object
specifies the temperature object identifier.

TP 54352 Unsigned RW -
Temperature Property
specifies the temperature property, corresponding to TO.

TV 54358 Real RO -
Temperature Value
indicates the current measured value of the defined object property.

HO 51279
BACnet
ObjID

RW -
Humidity Object
specifies the humidity object identifier.

HP 51280 Unsigned RW -
Humidity Property
specifies the temperature property, corresponding to HO.

HV 51286 Real RO -
Humidity Value
indicates the current measured value of the defined object property.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.

units 117 Enum RO 24
units
indicates the engineer unit that present-value reflects.
MatrixBBC Programmers Guide (10/5/2012) A-43

SCALING APPENDIX A: OBJECTS & PROPERTIES
A.22 SCALING

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (306),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Scale N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (306) indicates membership in a particular object type class.

present-value 85 Real RO - specifies the calculated scaled value.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

IO 51535
BACnet
ObjID

RW -
Input Object
specifies the object to be scaled.

IP 51536 Unsigned RW 0
Input Property
specifies the property associated with the object specified in IC to be
scaled.

X1 55345 Real RW 0
Input range X1 value
specifies the minimum value of the input.

X2 55346 Real RW 0
Input range X2 value
specifies the maximum value of the input.

Y1 55601 Real RW 0
Output range Y1 value
specifies the minimum value of the scaled output.

Y2 556012 Real RW 0
Output range Y2 value
specifies the maximum value of the scaled output.
A-44 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES INPUT SELECT
A.23 INPUT SELECT

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (300),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Input Select N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (300) indicates membership in a particular object type class.

present-value 85 Real RO - indicates the value of the property which has been selected.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

I1 45361
BACnet
ObjID

RW -
Input Object 1
specifies the object from which the first input property will be chosen.

A1 49457 Unsigned RW 0
Input Property 1
specifies the property associated with the first input object.

I2 45362
BACnet
ObjID

RW -
Input Object 2
specifies the object from which the second input property will be
chosen.

A2 49458 Unsigned RW 0
Input Property 2
specifies the property associated with the second input object.

SC 540834
BACnet
ObjID

RW -
Selection Object
specifies the object from which the property used for selection will be
chosen.

SA 54081 Unsigned RW 0

Selection Property
specifies the property to be used as the selection criteria. If the
specified property has a value of 0, present-value will take the value of
the property specified in I1 and A1. If the specified property has a value
of 1, present-value will take the value of the property specified in I2
and A2.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.
MatrixBBC Programmers Guide (10/5/2012) A-45

STAGING APPENDIX A: OBJECTS & PROPERTIES
A.24 STAGING

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (309),

Instance 1-16
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Staging n represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (240) indicates membership in a particular object type class.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

SM 54093 Unsigned RW -

Staging Mode
defines the staging application to be used

0=Object Turned Off
1=Delay On/Delay Off
2=Threshold Based Staging

LM 52301 Unsigned RW -

Lead/Lag/Leveling Mode
defines the staging function performed by the object

0=Normal <First On/Last Off>
1=Automatic Wear Leveling

NS 52819 Unsigned RW -

Number of Stages <Max Loading>
defines the number of stage outputs to use
2=2 Stages
3=3 Stages
4=4 Stages
5=5 Stages
6=6 Stages
7=7 Stages
8=8 Stages

IO 51535
BACnet
ObjID

RW -
Input Object
defines the input object used as the measured variable to perform
staging.

IP 51536 Unsigned RW 0
Input Property
defines the object property corresponding to IO.

IV 51542 Real RO
Input Value
reflects the current value of the input object property.

II 51529 Boolean RW -
Invert the Input?
specifies if the input sign should be reversed.

IS 51539 Boolean RW -
Invert the Setpoints?
specifies if the setpoints should be inverted for heating or cooling.

OO 53071
BACnet
ObjID

RW -
Interlock Override Object
defines the input object used as the measured variable to perform
interlock overrides.

OP 53072 Unsigned RW -
Interlock Override Property
defines the object property corresponding to OO.

OM 53069 BitStr RW -
Interlocking Staging Map
specifies the state of each stage output when interlocking is enabled.

OS 53075 CharStr RO -
Interlock Status
Provides feedback regarding the operational status of interlocking.
A-46 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES STAGING
SU 54101 Real RW 0.0
Loading Setpoint
defines the setpoint at which stages are enabled.

SL 54092 Real RW 0.0
Unloading Setpoint
defines the setpoint at which stages are disabled.

P1 53297 Real RW 0.0
Stage 1 Setpoint
defines the setpoint at which stage action will occur.

P2 53298 Real RW 0.0
Stage 2 Setpoint
defines the setpoint at which stage action will occur.

P3 53299 Real RW 0.0
Stage 3 Setpoint
defines the setpoint at which stage action will occur.

P4 53300 Real RW 0.0
Stage 4 Setpoint
defines the setpoint at which stage action will occur.

P5 53301 Real RW 0.0
Stage 5 Setpoint
defines the setpoint at which stage action will occur.

P6 53302 Real RW 0.0
Stage 6 Setpoint
defines the setpoint at which stage action will occur.

P7 53303 Real RW 0.0
Stage 7 Setpoint
defines the setpoint at which stage action will occur.

P8 53304 Real RW 0.0
Stage 8 Setpoint
defines the setpoint at which stage action will occur.

LD 52292 Unsigned RW 60
Loading Interval <Seconds>
defines the amount of time, in seconds, that the Staging object will
delay between enabling stages.

UD 54596 Unsigned RW 60
Unloading Interval <Seconds>
defines the amount of time, in seconds, that the Staging object will
delay between disabling stages.

LR 52306 Unsigned RO -
Seconds Until Next Loading Event Could Occur
indicates the amount of time remaining until the next stage is enabled.

UR 54610 Unsigned RO -
Seconds Until Next Unloading Event Could Occur
indicates the amount of time remaining until the next stage is disabled.

PR 53330 Unsigned RO -
Present Stages of Loading
indicates the number of stages being loaded by the Staging object.

S1 54065 Boolean RO False
Stage 1 Status
Indicates the current status of this specific stage.

S2 54066 Boolean RO False
Stage 2 Status
Indicates the current status of this specific stage.

S3 54067 Boolean RO False
Stage 3 Status
Indicates the current status of this specific stage.

S4 54068 Boolean RO False
Stage 4 Status
Indicates the current status of this specific stage.

S5 54069 Boolean RO False
Stage 5 Status
Indicates the current status of this specific stage.

S6 54070 Boolean RO False
Stage 6 Status
Indicates the current status of this specific stage.

Property Identifier # Data Type Access Default Value Description
MatrixBBC Programmers Guide (10/5/2012) A-47

STAGING APPENDIX A: OBJECTS & PROPERTIES
S7 54071 Boolean RO False
Stage 7 Status
Indicates the current status of this specific stage.

S8 54072 Boolean RO False
Stage 8 Status
Indicates the current status of this specific stage.

R1 53809 Real RW 0.0
Stage 1 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R2 53810 Real RW 0.0
Stage 2 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R3 53811 Real RW 0.0
Stage 3 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R4 53812 Real RW 0.0
Stage 4 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R5 53813 Real RW 0.0
Stage 5 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R6 53814 Real RW 0.0
Stage 6 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R7 53815 Real RW 0.0
Stage 7 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

R8 53186 Real RW 0.0
Stage 8 Run Hours
indicates the current amount of time, in hours, this specific stage has
operated.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.

Property Identifier # Data Type Access Default Value Description
A-48 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES BROADCAST
A.25 BROADCAST

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (143),

Instance 0
 a numeric code that is used to identify the object.

object_name 77 CharStr RW
Broadcast Outside

Air Temp
represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (143) indicates membership in a particular object type class.

present-value 85 Real RO - indicates the value of the property which has been selected.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

BM 49741 Unsigned RW 0

Broadcast Mode
specifies whether the controller should send or receive broadcasts

0=Disabled
1=Send
2=Receive

BZ 49498 Boolean RW 0

Broadcast Zone/Global
specifies whether the controller’s broadcasts are sent to the zone or
broadcast globally.

0=Zone broadcast
1=Global broadcast

ZN 55886 Unsigned RW 0
Zone Number
specifies the zone number to broadcast to.

IO 51535
BACnet
ObjID

RW -
Input Object
specifies the input object to be broadcast.

IP 51536 Unsigned RW 0
Input Property
specifies the property associated with the object specified in IC to be
broadcast.

BT 49748 Unsigned RW 5
Broadcast Time Interval <1 to 20 Mins>
specifies the amount of time, in minutes, that the object will send the
broadcast message.

ES 50515 Unsigned RO 0
Elapsed Seconds Since Broadcast
specifies the amount of time, in seconds, since the last broadcast
message was sent successfully.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.
MatrixBBC Programmers Guide (10/5/2012) A-49

REMAP APPENDIX A: OBJECTS & PROPERTIES
A.26 REMAP

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (304),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Remap Object n represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (304) indicates membership in a particular object type class.

present-value 85 varies RO - indicates the value of the property which is mapped to the output.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

O1 53041
BACnet
ObjID

RW -
Input Object
defines the input object.

P1 53297 Unsigned RW -
Input Property
defines the property of IO.

O2 53042
BACnet
ObjID

RW -
Output Object
defines the object to send the present-value to.

P2 53298 Unsigned RW 0
Output Property
defines the property of O2.

Q2 53554 Unsigned RW 255
Output Priority
defines the writing priority, if the value is being written to a
commandable object.

TO 54351
BACnet
ObjID

RW -
Trigger Object
defines the trigger object.

TP 54352 Unsigned RW 0
Trigger Property
defines the property of TO.

TB 54338 Unsigned RW 0
Trigger Biasing
defines the biasing mode for sending values.

RS 53843 CharStr RO -
Remap Status
indicates the current status of remapping.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.

RM 53837 Unsigned RW 0

Remap Mode
defines the mode for remaps
0=Disabled
1=Continuous
2=When Triggered <Else NULL>
3=When Triggered
A-50 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES NETMAP
A.27 NETMAP

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (307),

Instance 1-64
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Netmap Object n represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Proprietary (307) indicates membership in a particular object type class.

present-value 85 varies RO - indicates the value of the property which is mapped to the output.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

O1 53041
BACnet
ObjID

RW -
Input Object
defines the input object.

P1 53297 Unsigned RW -
Input Property
defines the property of IO.

II 51529 Unsigned RW -
Input Device Instance
defines the device instance corresponding to O1 and P1.

O2 53042
BACnet
ObjID

RW -
Output Object
defines the object to send the present-value to.

P2 53298 Unsigned RW -
Output Property
defines the property of O2.

OI 53065 Unsigned RW -
Output Device Instance
defines the device instance corresponding to O2 and P2.

Q2 53554 Unsigned RW -
Output Priority
defines the writing priority, if the value is being written to a
commandable object.

TO 54351
BACnet
ObjID

RW -
Trigger Object
defines the trigger object.

TP 54352 Unsigned RW -
Trigger Property
defines the property of TO.

TB 54338 Unsigned RW -
Trigger Biasing
defines the biasing mode for sending values.

TM 54349 Unsigned RW -
Time Between Writes in Seconds
defines the amount of time, in seconds, to delay between writes.

ET 50516 Unsigned RO -
Elapsed Time Since Last Write
defines the amount of time, in seconds, since the last write occurred.

RS 53843 CharStr RO -
Remap Status
indicates the current status of remapping.

FB 50754 CharStr RO -
Feedback Text
provides diagnostic details regarding the operation of the object.
MatrixBBC Programmers Guide (10/5/2012) A-51

NETMAP APPENDIX A: OBJECTS & PROPERTIES
RM 53837 Unsigned RW
RAM

-

Remap Mode
defines the mode for remaps
0=Disabled
1=Continuous
2=When Triggered <Else NULL>
3=When Triggered

Property Identifier # Data Type Access Default Value Description
A-52 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES ANALOG VALUE
A.28 ANALOG VALUE

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Analog Value (2),
Instance 1-1000

 a numeric code that is used to identify the object.

object_name 77 CharStr RW Analog Value N represents a name for the object that is unique internetwork-wide.

object_type 79
BACnet
ObjType

RO Analog Value (2) indicates membership in a particular object type class.

present_value 85 Real RW 0.0 indicates the current value, in engineering units, of the object.

status_flags 111
BACnet
Status
Flags

RO 0 four flags that indicate the general health of the program.

event_state 36
BACnet
Event
State

RO 0
provides a way to determine if this object has an active event state
associated with it.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

units 117
BACnet

Eng.
Units

RW 95 indicates the measurement units of this object.

priority_array 87
BACnet
Array

RO NULL contains prioritized commands that are in effect for this object.

relinquish_
default

104 Real RW 0.0
 the default value to be used for the present_value property when all
command priority values in the priority_array property have a NULL
value.

time_delay 113 Unsigned RW 0

specifies the minimum period of time in seconds during which the
present_value must be different from the alarm_value property before
a TO-OFFNORMAL event is generated or must remain equal to the
alarm_value property before a TO-NORMAL event is generated.

notification_
class

17 Unsigned RW 1
specifies the notification class to be used when handling and
generating event notifications for this object.

high_limit 45 Real RW 0.0
specifies a limit that the present_value must exceed before an event is
generated.

low_limit 59 Real RW 0.0
specifies a limit below which the present_value must fall before an
event is generated.

deadband 25 Real RW 0.0
specifies a range between the high_limit and low_limit properties
within which the present_value must remain for a TO-NORMAL event
to be generated

limit_enable 52
BACnet

Limit
Enable

RW 0
enables and disables reporting of High Limit and Low Limit off normal
events and their return to normal.

event_enable 35

BACnet
Event
Trans.

Bits

RW 0
 three flags that separately enable and disable reporting of TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events.
MatrixBBC Programmers Guide (10/5/2012) A-53

ANALOG VALUE APPENDIX A: OBJECTS & PROPERTIES
acked_
transitions

0

BACnet
Event
Trans.

Bits

RW 7
 three flags that separately indicate the receipt of acknowledgments for
TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events.

notify_type 72
BACnet
Notify
Type

RW 0
specifies whether the notifications generated by the object should be
Events or Alarms.

event_time_stam
ps

130
BACnet
ARRAY

RO -
defines the time stamps for when alarms for each limit type have been
sent.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

EA 50497 Boolean RW False
Enable Alarming
specifies if alarming should be enabled for the object. When set to
False, all alarming properties will be unavailable for selection.

Property Identifier # Data Type Access Default Value Description
A-54 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES BINARY VALUE
A.29 BINARY VALUE

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Binary Value (5),
 Instance 1-1000

 a numeric code that is used to identify the object.

object_name 77 CharStr RW Binary Value N represents a name for the object that is unique internetwork-wide.

object_type 79 Enum RO Binary Value (5) indicates membership in a particular object type class.

present_value 85 Enum RW 0 indicates the current value, in engineering units, of the object.

status_flags 111 Bit Str RO 0 four flags that indicate the general "health" of the program.

event_state 36 Enum RO 0
provides a way to determine if this object has an active event state
associated with it.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

inactive-text 46 CharStr RW Off specifies the text for an OWS to use when the present-value = Inactive.

active-text 4 CharStr RW On specifies the text for an OWS to use when present-value = Active.

minimum_off_
time

66 Unsigned RW 0
specifies the minimum number of seconds that the present_value
shall remain in the INACTIVE state after a write to the present_value
property causes that property to assume the INACTIVE state.

minimum_on_
time

67 Unsigned RW 0
indicates the minimum number of seconds that the present_value
shall remain in the ACTIVE state after a write to the present_value
property causes that property to assume the ACTIVE state.

priority_array 87
BACnet
Array

RO NULL contains prioritized commands that are in effect for this object.

relinquish_
default

104 Real RW 7
 the default value to be used for the present_value property when all
command priority values in the priority_array property have a NULL
value.

time_delay 113 Unsigned RW 0

specifies the minimum period of time in seconds during which the
present_value must be different from the alarm_value property before
a TO-OFFNORMAL event is generated or must remain equal to the
alarm_value property before a TO-NORMAL event is generated.

notification_
class

17 Unsigned RW 0
specifies the notification class to be used when handling and
generating event notifications for this object.

alarm-value 40
BACnet

BinaryPV
- Inactive

specifies the value that the Present_Value property must have before a
TO-OFFNORMAL event is generated.

event_enable 35

BACnet
Event
Trans.

Bits

RW 0
 three flags that separately enable and disable reporting of TO-
OFFNORMAL, TO-FAULT, and TO-NORMAL events.

acked_
transitions

0

BACnet
Event
Trans.

Bits

RW 7
 three flags that separately indicate the receipt of acknowledgments for
TO-OFFNORMAL, TO-FAULT, and TO-NORMAL events.

notify_type 72
BACnet
Notify
Type

RW 0
specifies whether the notifications generated by the object should be
Events or Alarms.
MatrixBBC Programmers Guide (10/5/2012) A-55

BINARY VALUE APPENDIX A: OBJECTS & PROPERTIES
event_time_stam
ps

130
BACnet
ARRAY

RO -
defines the time stamps for when alarms for each limit type have been
sent.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

EA 50497 Boolean RW False
Enable Alarming
specifies if alarming should be enabled for the object. When set to
False, all alarming properties will be unavailable for selection.

Property Identifier # Data Type Access Default Value Description
A-56 MatrixBBC Programmers Guide (10/5/2012)

APPENDIX A: OBJECTS & PROPERTIES COMM STATUS
A.30 COMM STATUS

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (400),

 Instance 0
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Comm Status represents a name for the object that is unique internetwork-wide.

object_type 79 Enum RO Proprietary (400) indicates membership in a particular object type class.

present_value 85 Enum RW 0 indicates the current value, in engineering units, of the object.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

out_of_service 81 Boolean RW 0
indicates whether or not the process this object represents is not in
service.

FM 50765 Unsigned RW -

Failure Mode Selection
defines the method used to determine comm failure.
0=Always mark as good
1=Fail if not passed a token
2=Fail if no data is read/written.

FD 50756 Unsigned RW 10
Failure Mode Delay Time in Seconds
defines the amount of time, in seconds, that sould elapse before a
comm failure verified.

BD 49732 Unsigned RW 20
Failure Mode Boot Delay in Seconds
defines the amount of time, in seconds, that sould elapse after initial
boot-time before a comm failure verified.
MatrixBBC Programmers Guide (10/5/2012) A-57

SEASON APPENDIX A: OBJECTS & PROPERTIES
A.31 SEASON

Property Identifier # Data Type Access Default Value Description

object_identifier 75
BACnet
ObjID

RO
Proprietary (402),

 Instance 0
 a numeric code that is used to identify the object.

object_name 77 CharStr RW Season represents a name for the object that is unique internetwork-wide.

object_type 79 Enum RO Proprietary (402) indicates membership in a particular object type class.

present_value 85 Enum RW 0 indicates the current value, in engineering units, of the object.

profile-name 168 CharStr RO 6-BBC-51-R1
defines the profile name used by AAM Tools to correspond program
files to the MatrixBBC controller.

TC 54339 BitStr RW -

T-STAT Objects Controlled By This Object
defines each T-STAT loop controlled by the present-value state of this
object,where:
bit 0=Thermostatic Control Loop 1
up to....
bit 31=Thermostatic Control Loop 32

TV 54358 BitStr RO -
T-STAT Objects Value in Summer Mode
indicates if the corresponding T-STAT loop is in summer mode.

TS 54355 BitStr RO -
T-STAT Objects Current SS State
reflects the current value of property SS on each T-STAT loop object.
A-58 MatrixBBC Programmers Guide (10/5/2012)

	1.1 What is the MatrixBBC?
	1.2 Fundamental Concepts Overview
	1.2.1 BACnet MS/TP Overview
	1.2.2 MS/TP Network Token Passing
	1.2.3 BACnet MS/TP LAN Wiring
	1.2.4 MS/TP Device Addressing
	1.2.5 Communication Baud Rates
	1.2.6 Network Optimization
	2.1 Logging Into the MatrixBBC
	2.1.1 About the MatrixBBC Control Panel
	2.2 Licensing
	2.2.1 License
	2.3 Communication Setup
	2.3.1 Port Configuration
	2.3.2 Port One/Two - MSTP
	2.3.3 BACnet Settings
	2.3.4 BBMD Settings
	2.4 System Administration
	2.4.1 System Services
	2.4.2 System Status
	2.4.3 Process Status
	2.4.4 System Updates
	2.4.5 Ethernet Settings
	2.4.6 Network Diagnostics
	2.4.7 Time Settings
	2.4.8 Web Server Configuration
	2.4.9 Backup/Restore
	2.4.10 Clear Configuration
	2.5 BACnet Time Synchronization Setup
	2.5.1 Configuring time-synchronization-recipients
	2.5.2 Configuring the Broadcast Time Sync Interval
	2.6 Daylight Saving
	2.7 Manually Configuring Device Address Bindings
	2.8 BACnet MS/TP Slave Proxy
	2.8.1 Enabling MS/TP Slave Proxy
	2.8.2 Configuring the Manual Slave Address Binding
	3.1 Overview
	3.2 SPL Programming
	3.2.1 Creating Programs in the MatrixBBC
	3.2.2 Loading Programs into MatrixBBC
	3.3 Introduction to SPL
	3.4 The Parts of SPL Programs
	3.5 Program Names
	3.6 The .SPL, .PLB and .LST Files
	3.7 Properties and Registers
	3.8 Compiler Control Statements
	3.9 Comments
	3.10 Labels
	3.11 Expressions
	3.12 Program Statements Overview
	3.13 Assignment Statements and Equates
	3.13.1 Standard Value assignment
	3.13.2 EQU
	3.14 Iteration, Branching and Subroutines
	3.14.1 GOTO statement
	3.14.2 IF... THEN... {ELSE...} Statement
	3.14.3 ON... GOTO... statement
	3.14.4 LOOP Statement
	3.14.5 GOSUB Statement
	3.14.6 RETURN Statement
	3.15 Program Delays
	3.15.1 SWAIT and MWAIT Statements
	3.15.2 WAIT Statement
	3.16 Execution Error Control
	3.16.1 ERRORABORT Statement
	3.16.2 ERRORWAIT Statement
	3.16.3 ONERROR Statement
	3.17 Debugging Statements
	3.17.1 SECTION Statement
	3.18 Program Control Properties
	3.19 Using SPL with BACnet Objects
	3.20 Fundamentals of SPL in BACnet
	3.20.1 The PROP Statement
	3.20.2 Prop Statement Examples
	3.21 Working with Object Properties
	3.21.1 Referencing Objects
	3.21.2 Referencing Properties
	3.21.3 Addressing Object Properties
	3.21.4 Addressing User-Defined properties
	3.21.5 Peer-To-Peer Addressing
	3.21.6 Writing Values to Object Properties
	3.21.7 Data Type Sensitivity with BACnet SPL
	3.21.8 EQU Function Limitations in BACnet SPL
	3.22 Object Syntax Reference
	3.23 Advanced BACnet SPL Functions
	3.23.1 The OID Function
	3.23.2 The BACNET Statement
	3.24 Troubleshooting Your SPL Program
	3.24.1 Using SECTION Statements
	3.24.2 Using Single-Step Mode
	3.24.3 Reference the .LST File
	4.1 Scheduling Overview
	4.1.1 About Schedule Objects
	4.1.2 About Calendar Objects
	4.1.3 Creating Schedules in the MatrixBBC
	4.1.4 Creating Calendars in the MatrixBBC
	4.2 Schedule Object Configuration
	4.2.1 Determine Your Schedule Application
	4.2.2 Configure the Schedule Datatype
	4.2.3 Configure the Effective Period
	4.2.4 Configure the List of Object-Property References
	4.2.5 Configure the Priority for Writing
	4.2.6 Configure the Weekly-Schedule
	4.2.7 Configuring the Exception Schedule
	4.3 Calendar Object Configuration
	4.3.1 Auto-Deleting Stale Calendar Entries
	5.1 Notification Class Overview
	5.1.1 Creating Notification Classes in the MatrixBBC
	5.1.2 Configuring the Priority
	5.1.3 Configuring Ack-Required
	5.1.4 Configuring the Recipient List
	6.1 Data Storage Overview
	6.1.1 Programming Concepts and Techniques
	6.2 Analog Value Objects
	6.2.1 Creating Analog Values in the MatrixBBC
	6.2.2 Configuring Alarm/Event Notifications
	6.2.3 Analog Value Application Examples
	6.3 Binary Value Objects
	6.3.1 Creating Binary Values in the MatrixBBC
	6.3.2 Configuring Alarm/Event Notifications
	6.4 Trend Log Objects
	6.4.1 Creating Trend Logs in the MatrixBBC
	6.4.2 Configuring the Object-Property for Sampling
	6.4.3 Configuring the Start and Stop Times
	6.4.4 Configuring the Logging Type
	6.4.5 Enabling the Trend Log
	7.1 Data Manipulation Overview
	7.1.1 Programming Concepts and Techniques
	7.2 Math
	7.2.1 Creating Math Objects in the MatrixBBC
	7.2.2 Math Object Configuration
	7.2.3 Feedback Text
	7.3 Logic
	7.3.1 Creating Logic Objects in the MatrixBBC
	7.3.2 Logic Object Configuration
	7.4 Min/Max/Avg
	7.4.1 Creating Min/Max/Avg Objects in the MatrixBBC
	7.5 Enthalpy
	7.5.1 Creating Enthalpy Objects in the MatrixBBC
	7.6 Scale
	7.6.1 Creating Scale Objects in the MatrixBBC
	7.6.2 Scale Object Configuration
	7.7 Input Select
	7.7.1 Creating Input Select Objects in the MatrixBBC
	7.7.2 Input Select Object Configuration
	7.8 Staging
	7.8.1 Creating Staging Objects in the MatrixBBC
	7.8.2 Basic Configuration
	7.8.3 Staging Modes
	7.8.4 Stage Interlocking
	8.1 Data Movement Overview
	8.1.1 Programming Concepts and Techniques
	8.2 Broadcasts
	8.2.1 Creating Broadcast Objects in the MatrixBBC
	8.2.2 Broadcasting Concepts
	8.2.3 Sending a Broadcast
	8.2.4 Receiving a Broadcast
	8.2.5 Feedback and Status Information
	8.3 Local Remaps
	8.3.1 Creating Local Remap in the MatrixBBC
	8.3.2 Remap Mode
	8.3.3 Data Coercion Protection
	8.3.4 Feedback and Status Information
	8.4 Netmap Objects
	8.4.1 Creating Netmap Objects in the MatrixBBC
	8.4.2 Netmap Mode
	8.4.3 Feedback and Status Information
	9.1 What are IOX Modules?
	9.1.1 Features of IOX Modules
	9.1.2 Remote I/O and Mapping Points
	9.2 IOX Module Specifications
	9.2.1 General
	9.2.2 SSB-FI1
	9.2.3 SSB-UI1
	9.2.4 SSB-AO1
	9.2.5 SSB-DI1
	9.2.6 SSB-DO1
	9.2.7 SSB-DO1-I
	9.2.8 SSB-DO2
	9.2.9 SSB-DO2-I
	9.2.10 SSB-IOX1-1
	9.2.11 SSB-IOX1-2
	9.2.12 SSB-IOX2-1
	9.2.13 SSB-IOX2-2
	9.3 Length of the Network
	9.4 Number of Devices
	9.4.1 Communications Limits
	9.5 GID Numbers and Mapping IOX Modules
	9.5.1 Writing GIDs to Devices
	9.5.2 Removing GID assignments
	9.6 SSB-FI1
	9.6.1 Features
	9.6.2 Wiring/Configuration
	9.6.3 Mounting the SSB-FI1
	9.6.4 Status Indicator LED
	9.6.5 SSB-FI Configuration Table
	9.7 SSB-UI1
	9.7.1 Features
	9.7.2 Wiring/Configuration
	9.7.3 Mounting the SSB-UI1
	9.7.4 Status Indicator LED
	9.7.5 SSB-UI Configuration Table
	9.8 SSB-AO1
	9.8.1 Features
	9.8.2 Wiring/Configuration
	9.8.3 Mounting the SSB-AO1
	9.8.4 Status Indicator LED
	9.8.5 SSB-AO Configuration Table
	9.9 SSB-DI1
	9.9.1 Features
	9.9.2 Wiring/Configuration
	9.9.3 Mounting the SSB-DI1
	9.9.4 Status Indicator LED
	9.9.5 SSB-DI1 Configuration Table
	9.10 SSB-DO1
	9.10.1 Features
	9.10.2 Mounting the SSB-DO1
	9.10.3 Wiring/Configuration
	9.10.4 SSB-DO1 Configuration Table
	9.11 SSB-DO1-I
	9.11.1 Features
	9.11.2 Mounting the SSB-DO1-I
	9.11.3 Wiring/Configuration
	9.11.4 SSB-DO1-I Configuration Table
	9.12 SSB-DO2
	9.12.1 Features
	9.12.2 Mounting the SSB-DO2
	9.12.3 Wiring/Configuration
	9.12.4 SSB-DO2 Configuration Table
	9.13 SSB-DO2-I
	9.13.1 Features
	9.13.2 Mounting the SSB-DO2-I
	9.13.3 Wiring/Configuration
	9.13.4 SSB-DO1-I Configuration Table
	9.14 SSB-IOX Family
	9.15 SSB-IOX1-x
	9.15.1 SSB-IOX1-1 Features
	9.15.2 SSB-IOX1-2 Features
	9.15.3 Wiring/Configuration
	9.15.4 Network & Power
	9.15.5 Universal Inputs
	9.15.6 Digital Inputs
	9.15.7 Analog Outputs
	9.15.8 Digital Outputs
	9.15.9 Mounting the SSB-IOX1-X
	9.15.10 Status Indicator LED
	9.15.11 SSB-IOX1-1 Configuration Table
	9.16 SSB-IOX2-x
	9.16.1 SSB-IOX2-1 Features
	9.16.2 SSB-IOX2-2 Module
	9.16.3 Wiring/Configuration
	9.16.4 Network & Power
	9.16.5 Universal Inputs
	9.16.6 Analog Outputs
	9.16.7 Digital Outputs
	9.16.8 Mounting the SSB-IOX2-X
	9.16.9 SSB-IOX2-1 Configuration Table
	10.1 Inputs Overview
	10.1.1 Programming Concepts and Techniques
	10.2 Universal Inputs
	10.2.1 Creating Analog Inputs in the MatrixBBC
	10.2.2 Analog Input Configuration
	10.2.3 Voltage Inputs
	10.2.4 Configuring Analog Input Alarm/Event Notifications
	10.2.5 Creating Binary Inputs in the MatrixBBC
	10.2.6 Binary Input Configuration
	10.2.7 Configuring Binary Input Alarm/Event Notifications
	10.3 Digital Inputs
	10.3.1 Configuring the Digital Inputs
	10.4 Piecewise Curves
	10.4.1 Creating Piecewise Curves in the MatrixBBC
	10.4.2 Piecewise Curve Configuration
	10.4.3 Piecewise Curves for Voltage Inputs
	10.4.4 Piecewise Curves for Current Inputs
	10.4.5 Piecewise Curves for Resistance Inputs
	11.1 Outputs Overview
	11.1.1 Programming Concepts and Techniques
	11.2 Analog Outputs
	11.2.1 Creating Analog Outputs in the MatrixBBC
	11.2.2 Configuring Minimum and Maximum Thresholds
	11.2.3 Configuring Alarm/Event Notifications
	11.2.4 AutoStuff Configuration
	11.2.5 Other Logic Properties
	11.3 Binary Outputs
	11.3.1 Creating Binary Outputs in the MatrixBBC
	11.3.2 Configuring Minimum Off/On Times
	11.3.3 Configuring Polarity
	11.3.4 Configuring State Texts
	11.3.5 Configuring Alarm/Event Notifications
	11.3.6 AutoStuff Configuration
	11.3.7 Other Logic Properties
	12.1 Control Loops Overview
	12.1.1 Programming Concepts and Techniques
	12.2 Analog Output Control Loops
	12.2.1 Basic Setup
	12.2.2 Proportional Control Setup
	12.2.3 Deadband Configuration
	12.2.4 Reset Control Setup
	12.2.5 Interlock Setup
	12.2.6 Soft Start Setup
	12.2.7 STAT Override Offset and Adjustment
	12.2.8 Enabling the Control Loop
	12.3 Pulse-Pair PID Control
	12.3.1 Basic Setup
	12.3.2 Proportional Control Setup
	12.3.3 Deadband Configuration
	12.3.4 Reset Control Setup
	12.3.5 Calibration
	12.3.6 STAT Override Offset and Adjustment
	12.3.7 Enabling the Control Loop
	12.4 Thermostatic Control
	12.4.1 Basic Setup
	12.4.2 Configuring Loop Parameters
	12.4.3 STAT Override Offset and Adjustment
	12.4.4 Enabling the Control Loop
	13.1 Comm Status
	13.1.1 Creating the Comm Status Object in the MatrixBBC
	13.1.2 Communication Status Options
	13.2 Season
	13.2.1 Creating the Season Object in the MatrixBBC
	13.2.2 Indicating the Current Season
	13.2.3 Controlling Seasonal TSTAT Loops Directly
	13.2.4 Overview of Current Seasonal States
	13.3 Mfg Object
	13.3.1 (UT) Uptime Counter in Seconds
	A.1 Device Object
	A.2 Analog Inputs (UIs)
	A.3 Binary Inputs (UIs) and (DIs)
	A.4 Piecewise Curves
	A.5 Analog Outputs
	A.6 Binary Outputs
	A.7 STATBus Summary
	A.8 STATBus
	A.9 Programs 1-64
	A.10 FILE0
	A.11 PLB1-64
	A.12 Analog PID
	A.13 Pulse Pair PID
	A.14 Thermostatic Control
	A.15 Schedules
	A.16 Calendars
	A.17 Notification Class
	A.18 Math
	A.19 Logic
	A.20 Min/Max/Avg
	A.21 Enthalpy
	A.22 Scaling
	A.23 Input Select
	A.24 Staging
	A.25 Broadcast
	A.26 Remap
	A.27 Netmap
	A.28 Analog Value
	A.29 Binary Value
	A.30 Comm Status
	A.31 Season

